Porcisia transmission by prediuresis of sand flies
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36034718
PubMed Central
PMC9399930
DOI
10.3389/fcimb.2022.981071
Knihovny.cz E-zdroje
- Klíčová slova
- Culicoides, Lutzomyia, Malpighian tubules, Porcisia deanei, Porcisia hertigi, contaminative transmission, prediuresis,
- MeSH
- fylogeneze MeSH
- hmyz - vektory MeSH
- Leishmania * MeSH
- myši MeSH
- Psychodidae * MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Parasites of the genus Porcisia, together with the genus Endotrypanum, form a sister clade to the species-rich and medically important genus Leishmania. Both Porcisia species, P. hertigi and P. deanei, are dixenous parasites of Neotropical porcupines. Almost 50 years after their first discovery, knowledge of their life cycle remains poor and their insect vectors are unknown. Because competent vectors of their closest phylogenetic relatives, genera Endotrypanum and Leishmania, are phlebotomine sand flies (Diptera: Psychodidae) and/or biting midges (Diptera: Ceratopogonidae), we examined here the potential of both sand flies and biting midges to transmit Porcisia parasites. The insects (Lutzomyia longipalpis, L. migonei and Culicoides sonorensis) were exposed to parasites through the chicken skin membrane and dissected at various time intervals post bloodmeal. Potentially infected females were also allowed to feed on the ears of anaesthetized BALB/c mice and the presence of parasite DNA was subsequently confirmed in the mice by PCR. Porcisia hertigi did not survive defecation in L. longipalpis or L. migonei, suggesting that these sand fly species are unlikely to serve as natural vectors of this parasite. Similarly, P. hertigi infections were lost in Culicoides midges. In contrast, mature P. deanei infections developed in 51-61% of L. longipalpis females, 7.3% of L. migonei females and 7.7% of Culicoides sonorensis females. In all three vector species, P. deanei colonized predominantly Malpighian tubules and produced metacyclic infective forms. Transmission of P. daenei to BALB/c mice was demonstrated via the prediuresis of L. longipalpis females. This mode of transmission, as well the colonization of Malpighian tubules as the dominant tissue of the vector, is unique among trypanosomatids. In conclusion, we demonstrated the vector competence of L. longipalpis for P. deanei but not for P. hertigi, and further studies are needed to evaluate competence of other Neotropical vectors for these neglected parasites.
Departamento de Parasitologia Instituto de Ciências Biomédicas Cidade Universitária São Paulo Brazil
Department of Parasitology Faculty of Science Charles University Prague Czechia
Transmission Biology The Pirbright Institute Surrey United Kingdom
Zobrazit více v PubMed
Alexandre J., Sadlova J., Lestinova T., Vojtkova B., Jancarova M., Podesvova L., et al. . (2020). Experimental infections and co-infections with leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis . Sci. Rep. 10, 1–8. doi: 10.1038/s41598-020-60600-7 PubMed DOI PMC
Anez N., Nieves E., Cazorla D. (1989). The validity of the developmental pattern in the sandfly gut for classification of Leishmania . Trans. R. Soc Trop. Med. Hyg. 83, 634–635. doi: 10.1016/0035-9203(89)90378-7 PubMed DOI
Becvar T., Vojtkova B., Siriyasatien P., Votypka J., Modry D., Jahn P., et al. . (2021). Experimental transmission of Leishmania (Mundinia) parasites by biting midges (Diptera: Ceratopogonidae). PloS Pathog. 17, 1–18. doi: 10.1371/journal.ppat.1009654 PubMed DOI PMC
Brotánková A., Fialová M., Čepička I., Brzoňová J., Svobodová M. (2022). Trypanosomes of the Trypanosoma theileri group: Phylogeny and new potential vectors. Microorganisms 10 (2), 294. doi: 10.3390/microorganisms10020294 PubMed DOI PMC
Chanmol W., Jariyapan N., Somboon P., Bates M. D., Bates P. A. (2019). Development of Leishmania orientalis in the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) and the biting midge Culicoides soronensis (Diptera: Ceratopogonidae). Acta Trop. 199, 105157. doi: 10.1016/j.actatropica.2019.105157 PubMed DOI
Croft S. L., Molyneux D. H. (1979). Studies on the ultrastructure, virus-like particles and infectivity of Leishmania hertigi. Ann. Trop. Med. Parasitol. 73, 213–226. doi: 10.1080/00034983.1979.11687251 PubMed DOI
da Silva D. A., de Madeira F., Filho C. J. L. B., Schubach E. Y. P., da S J. H., Figueiredo F. B. (2013). Leishmania (Leishmania) hertigi in a porcupine (Coendou sp.) found in brasília, federal district, Brazil. Rev. Bras. Parasitol. Vet. 22, 297–299. doi: 10.1590/s1984-29612013005000014 PubMed DOI
Deane L. M., da Silva J. E., de Figueiredo P. Z. (1974). Leishmaniae in the viscera of porcupines from the state of piaui, Brazil. Rev. Inst. Med. Trop. Sao Paulo 16, 68–69. PubMed
Dougall A. M., Alexander B., Holt D. C., Harris T., Sultan A. H., Bates P. A., et al. . (2011). Evidence incriminating midges (Diptera : Ceratopogonidae ) as potential vectors of Leishmania in Australia q. Int. J. Parasitol. 41, 571–579. doi: 10.1016/j.ijpara.2010.12.008 PubMed DOI
Dvořák V., Shaw J. J., Volf P. (2018). “Parasite biology: The vectors,” in The leishmaniases: Old neglected tropical diseases. Eds. Bruschi F., Gradoni L.. Cham, Switzerland:Springer, 31–78. doi: 10.1007/978-3-319-72386-0 DOI
Espinosa O. A., Serrano M. G., Camargo E. P., Teixeira M. M. G., Shaw J. J. (2016). An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum . Parasitology 145, 430–442. doi: 10.1017/S0031182016002092 PubMed DOI
Franco A. M. R., Tesh R. B., Guzman H., Deane M. P., Grimaldi G. J. (1997). Development od Endotrypanum (Kinetoplastida: Trypanosomatidae) in experimentally infected phlebotomine sand flies (Ditera: Psychodidae). J. Med. Entomol. 34, 189–192. doi: 10.1093/jmedent/34.2.189 PubMed DOI
Guimarães V. C. F. V., Pruzinova K., Sadlova J., Volfova V., Myskova J., Filho S. P. B., et al. . (2016). Lutzomyia migonei is a permissive vector competent for Leishmania infantum . Parasites Vectors 9, 1–6. doi: 10.1186/s13071-016-1444-2 PubMed DOI PMC
Herrer A. (1971). Leishmania hertigi sp. n., from the tropical porcupine, Coendou rothschildi Thomas. J. Parasitol. 57, 626–629. doi: 10.2307/3277928 PubMed DOI
Herrer A., Thatcher V. E., Johnson C. M. (1966). Natural infections of Leishmania and trypanosomes demonstrated by skin culture. J. Parasitol. 52, 954–957. doi: 10.2307/3276542 PubMed DOI
Hertig M., Mcconnell P. (1963). Experimental infection of Panamanian phlebotomus sandflies with Leishmania . Exp. Parasitol 14, 92–106. doi: 10.1016/0014-4894(63)90014-6 PubMed DOI
Killick-Kendrick R. (1979). “Biology of leishmania in phlebotomine sandflies,” in Biology of kinetoplastida. Eds. Lumsden W. H., Evans D. A. (London: Academic Press; ), 396–460.
Lainson R., Shaw J. J. (1968). Leishmaniasis in Brazil: I. observations on enzootic rodent leishmaniasis. incrimination of Lutzomyia flaviscutellata (Mangabeira) as the vector in the lower Amazon basin. Trans. R. Soc. Trop. Med. Hyg. 62, 385–395. doi: 10.1016/0035-9203(68)90090-4 PubMed DOI
Lainson R., Shaw J. J. (1977). Leishmanias of Neotropical porcupines: Leishmania hertigi deanei nov. Subsp. Acta Amaz. 7, 51–57. doi: 10.1590/1809-43921977071051 DOI
Lainson R., Shaw J. J. (1987). “Evolution, classification and geographical distribution,” in The leishmaniases in biology and medicine: Volume I biology and epidemiology. Eds. Peters W., Killick-Kendrick R. (London: Academic Press Inc; ), 1–120.
Lainson R., Ward R. D., Shaw J. J. (1977). Leishmania in phlebotomid sandflies: VI. importance of hindgut development in distinguishing between parasites of the Leishmania mexicana and L. braziliensis complexes. Proc. R. Soc. Lond. B 199, 309–320. doi: 10.1098/rspb.1977.0141 PubMed DOI
Lukeš J., Butenko A., Hashimi H., Maslov D. A., Votýpka J., Yurchenko V. (2018). Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 34, 466–480. doi: 10.1016/j.pt.2018.03.002 PubMed DOI
Maroli M., Feliciangeli M. D., Bichaud L., Charrel R. N., Gradoni L. (2013). Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 27, 123–147. doi: 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Mutero C. M., Mutinga M. J. (1993). Defecation by Anopheles arabiensis mosquitoes of host blood infected with live Trypanosoma congolense . Trop. Med. Parasitol. 44, 23–26. PubMed
Myskova J., Votypka J. A. N., Volf P. (2008). Leishmania in sand flies: Comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Ento Mol., 45 (1) 133–138. doi: 10.1093/jmedent/45.1.133 PubMed DOI
Nieves E., Pimenta P. F. P. (2000). Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). J. Med. Entomol. 37, 134–140. doi: 10.1603/0022-2585-37.1.134 PubMed DOI
Nocelli R., Cintra-Socolowski P., Roat T., Silva-Zacarin E., Malaspina O. (2016). Comparative physiology of malpighian tubules: form and function. Open Access Insect Physiol. 6, 13–23. doi: 10.2147/oaip.s72060 DOI
Rangel E. F., Deane L. M., Grimaldi G., De Souza N. A., Wermelinger E. D., Barbosa A. F. (1985). Flagellates in the malpighian tubules of laboratory-bred Lutzomyia longipalpis fed on a hamster experimentally infected with Leishmania mexicana amazonensis . Mem. Inst. Oswaldo Cruz 80, 371–372. doi: 10.1590/s0074-02761985000300016 PubMed DOI
Sadlova J., Price H. P., Smith B. A., Votypka J., Volf P., Smith D. F. (2010). The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi . Cell. Microbiol. 12, 1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC
Sádlová J., Reishig J., Volf P. (1998). Prediuresis in female Phlebotomus sandflies (Diptera: Psychodidae). Eur. J. Entomol. 95, 643–647.
Sádlová J., Volf P. (1999). Occurrence of Leishmania major in sandfly urine. Parasitology 118, 455–460. doi: 10.1017/S0031182099004254 PubMed DOI
Shaw J. J. (1981). “The behaviour of endotrypanum schaudinni (Kinetoplastida: Trypanosomatidae) in three species of laboratory-bred Neotropical sandflies (Diptera: Psychodidae) and its influence on the classification of the genus leishmania,” in Parasitological topics. a presentation volume to p. c. c. garnham, f. r. s., on the occasion of his 80th birthday. Ed. Canning E. U. (Lawrence, KS, USA: Allen Press; ), 232–241.
Shimabukuro P. H. F., De Andrade A. J., Galati E. A. B. (2017). Checklist of American sand flies (Diptera, psychodidae, phlebotominae): Genera, species, and their distribution. Zookeys 2017, 67–106. doi: 10.3897/zookeys.660.10508 PubMed DOI PMC
Thies S. F., de Bronzoni R. V. M., Michalsky É.M., dos Santos E. S., da Silva D. J. F., Dias E. S., et al. . (2018). Aspects on the ecology of phlebotomine sand flies and natural infection by Leishmania hertigi in the southeastern Amazon basin of Brazil. Acta Trop. 177, 37–43. doi: 10.1016/j.actatropica.2017.09.023 PubMed DOI
Ticha L., Kykalova B., Sadlova J., Gramiccia M., Gradoni L., Volf P. (2021). Development of various Leishmania (Sauroleishmania) tarentolae strains in three phlebotomus species. Microorganisms 9, 1–13. doi: 10.3390/microorganisms9112256 PubMed DOI PMC
Tyler K. M., Engman D. M. (2001). The life cycle of Trypanosoma cruzi revisited. Int. J. Parasit. 31, 472–481. doi: 10.1016/s0020-7519(01)00153-9 PubMed DOI
Volf P., Volfova V. (2011). Establishment and maintenance of sand fly colonies. J. Vector Ecol. 36, 1–9. doi: 10.1111/j.1948-7134.2011.00106.x PubMed DOI
Voss R. S. (2015). “Superfamily erethizontoidea Bonaparte 1845,” in Mammals of south America, volume 2 rodents. Eds. Patton J. L., Pardiñas U. F. J., D’Elía G. (Chicago: University of Chcago Press; ), 786–805
Walters L. L., Modi G. B., Tesh R. B., Burrage T. (1987). Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abonnenci (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 36, 294–314. doi: 10.4269/ajtmh.1987.36.294 PubMed DOI
Zeledón R., Ponce C., de Ponce E. (1977). Finding of Leishmania hertigi in the Costa Rican porcupine. J. Parasitol. 63, 924–925. doi: 10.2307/3279912 PubMed DOI
Leishmania spp. in equids and their potential vectors in endemic areas of canine leishmaniasis