Experimental transmission of Leishmania (Mundinia) parasites by biting midges (Diptera: Ceratopogonidae)

. 2021 Jun ; 17 (6) : e1009654. [epub] 20210611

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34115806

Grantová podpora
BBS/E/I/00007039 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 34115806
PubMed Central PMC8221790
DOI 10.1371/journal.ppat.1009654
PII: PPATHOGENS-D-21-00226
Knihovny.cz E-zdroje

Leishmania parasites, causative agents of leishmaniasis, are currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania and Mundinia. The recently established subgenus Mundinia has a wide geographical distribution and contains five species, three of which have the potential to infect and cause disease in humans. While the other Leishmania subgenera are transmitted exclusively by phlebotomine sand flies (Diptera: Psychodidae), natural vectors of Mundinia remain uncertain. This study investigates the potential of sand flies and biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to transmit Leishmania parasites of the subgenus Mundinia. Sand flies (Phlebotomus argentipes, P. duboscqi and Lutzomyia migonei) and Culicoides biting midges (Culicoides sonorensis) were exposed to five Mundinia species through a chicken skin membrane and dissected at specific time intervals post bloodmeal. Potentially infected insects were also allowed to feed on ear pinnae of anaesthetized BALB/c mice and the presence of Leishmania DNA was subsequently confirmed in the mice using polymerase chain reaction analyses. In C. sonorensis, all Mundinia species tested were able to establish infection at a high rate, successfully colonize the stomodeal valve and produce a higher proportion of metacyclic forms than in sand flies. Subsequently, three parasite species, L. martiniquensis, L. orientalis and L. sp. from Ghana, were transmitted to the host mouse ear by C. sonorensis bite. In contrast, transmission experiments entirely failed with P. argentipes, although colonisation of the stomodeal valve was observed for L. orientalis and L. martiniquensis and metacyclic forms of L. orientalis were recorded. This laboratory-based transmission of Mundinia species highlights that Culicoides are potential vectors of members of this ancestral subgenus of Leishmania and we suggest further studies in endemic areas to confirm their role in the lifecycles of neglected pathogens.

Zobrazit více v PubMed

Ashford RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol. 2000;30(12–13): 1269–1281. doi: 10.1016/s0020-7519(00)00136-3 PubMed DOI

WHO. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. 2020.

Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2016;145(Special Issue 4): 430–442. doi: 10.1017/S0031182016002092 PubMed DOI

Muniz J, Medina H. Cutaneous Leishmaniasis in the Guineapig. Hospital (Rio J). 1948;33(1): 7–25. PubMed

Rose K, Curtis J, Baldwin T, Mathis A, Kumar B, Sakthianandeswaren A, et al.. Cutaneous leishmaniasis in red kangaroos: isolation and characterisation of the causative organisms. Int J Parasitol. 2004;34(6): 655–664. doi: 10.1016/j.ijpara.2004.03.001 PubMed DOI

Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al.. Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) Provides Support for a Gondwanan Origin of Dixenous Parasitism in the Leishmaniinae. PLoS Negl Trop Dis. 2017;11(1):1–26. doi: 10.1371/journal.pntd.0005215 PubMed DOI PMC

Jariyapan N, Daroontum T, Jaiwong K, Chanmol W, Intakhan N, Sor-suwan S, et al.. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasit Vectors [Internet]. 2018;11(1): 351. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-018-2908-3 PubMed DOI PMC

Dedet JP, Roche B, Pratlong F, Caies-Quist D, Jouannelle J, Benichou JC, et al.. Diffuse cutaneous infection caused by a presumed monoxenous trypanosomatid in a patient infected with HIV. Trans R Soc Trop Med Hyg. 1995;89(6): 644–646. doi: 10.1016/0035-9203(95)90427-1 PubMed DOI

Desbois N, Pratlong F, Quist D, Dedet J-P. Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies). Parasite [Internet]. 2014;21: 12. Available from: http://www.parasite-journal.org/10.1051/parasite/2014011 PubMed DOI PMC

Kwakye-Nuako G, Mosore MT, Duplessis C, Bates MD, Puplampu N, Mensah-Attipoe I, et al.. First isolation of a new species of Leishmania responsible for human cutaneous leishmaniasis in Ghana and classification in the Leishmania enriettii complex. Int J Parasitol. 2015;45(11): 679–684. doi: 10.1016/j.ijpara.2015.05.001 PubMed DOI

Bualert L, Charungkiattikul W, Thongsuksai P, Mungthin M, Siripattanapipong S, Khositnithikul R, et al.. Case report: Autochthonous disseminated dermal and visceral leishmaniasis in an AIDS patient, Southern Thailand, caused by Leishmania siamensis. Am J Trop Med Hyg. 2012;86(5): 821–824. doi: 10.4269/ajtmh.2012.11-0707 PubMed DOI PMC

Siripattanapipong S, Leelayoova S, Ninsaeng U, Mungthin M. Detection of DNA of Leishmania siamensis in Sergentomyia (Neophlebotomus) iyengari (Diptera: Psychodidae) and molecular identification of blood meals of sand flies in an affected area, Southern Thailand. J Med Entomol. 2018;55(5): 1277–1283. doi: 10.1093/jme/tjy069 PubMed DOI

Supsrisunjai C, Kootiratrakarn T, Puangpet P, Bunnag T, Chaowalit P, Wessagowit V. Case report: Disseminated autochthonous dermal leishmaniasis caused by Leishmania siamensis (PCM2 Trang) in a patient from central Thailand infected with human immunodeficiency virus. Am J Trop Med Hyg. 2017;96(5): 1160–1163. doi: 10.4269/ajtmh.16-0472 PubMed DOI PMC

Reuss SM, Dunbar MD, Calderwood Mays MB, Owen JL, Mallicote MF, Archer LL, et al.. Autochthonous Leishmania siamensis in horse, Florida, USA. Emerg Infect Dis. 2012;18(9): 1545–1547. doi: 10.3201/eid1809.120184 PubMed DOI PMC

Lobsiger L, Müller N, Schweizer T, Frey CF, Wiederkehr D, Zumkehr B, et al.. An autochthonous case of cutaneous bovine leishmaniasis in Switzerland. Vet Parasitol. 2010;169(3–4): 408–414. doi: 10.1016/j.vetpar.2010.01.022 PubMed DOI

Müller N, Welle M, Lobsiger L, Stoffel MH, Boghenbor KK, Hilbe M, et al.. Occurrence of Leishmania sp. in cutaneous lesions of horses in Central Europe. Vet Parasitol. 2009;166(3–4): 346–351. doi: 10.1016/j.vetpar.2009.09.001 PubMed DOI

Pothirat T, Tantiworawit A, Chaiwarith R, Jariyapan N, Wannasan A, Siriyasatien P, et al.. First Isolation of Leishmania from Northern Thailand: Case Report, Identification as Leishmania martiniquensis and Phylogenetic Position within the Leishmania enriettii Complex. 2014;8(12): e3339. PubMed PMC

Jungudomjaroen S, Phumee A, Chusri S, Kraivichian K, Jariyapan N, Payungporn S, et al.. Detection of Leishmania martiniquensis DNA in various clinical samples by quantitative PCR. Trop Biomed. 2015;32(4): 736–744. PubMed

Boisseau-Garsaud AM, Cales-Quist D, Desbois N, Jouannelle J, Jouannelle A, Pratlong F, et al.. A new case of cutaneous infection by a presumed monoxenous trypanosomatid in the island of Martinique (French West Indies). Trans R Soc Trop Med Hyg. 2000;94: 51–52. doi: 10.1016/s0035-9203(00)90435-8 PubMed DOI

Liautaud B, Vignier N, Miossec C, Plumelle Y, Kone M, Delta D, et al.. First case of visceral leishmaniasis caused by Leishmania martiniquensis. Am J Trop Med Hyg. 2015;92(2): 317–319. doi: 10.4269/ajtmh.14-0205 PubMed DOI PMC

Dougall A, Shilton C, Low Choy J, Alexander B, Walton S. New reports of Australian cutaneous leishmaniasis in Northern Australian macropods. Epidemiol Infect. 2009;137(10): 1516–1520. doi: 10.1017/S0950268809002313 PubMed DOI

Sadlova J, Vojtkova B, Becvar T, Lestinova T, Spitzova T, Bates P, et al.. Host competence of the African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania donovani from Ethiopia and L. (Mundinia) sp. from Ghana. Int J Parasitol Parasites Wildl. 2020; 11: 40–45. doi: 10.1016/j.ijppaw.2019.12.002 PubMed DOI PMC

Belehu A, Turk JL. Establishment of cutaneous Leishmania enriettii infection in hamsters. Infect Immun. 1976;13(4): 1235–1241. doi: 10.1128/iai.13.4.1235-1241.1976 PubMed DOI PMC

Thomaz-Soccol V, Pratlong F, Langue R, Castro E, Luz E, Dedet JP. New isolation of Leishmania enriettii Muniz and Medina, 1948 in Paraná State, Brazil, 50 years after the first description, and isoenzymatic polymorphism of the L. enriettii taxon. Ann Trop Med Parasitol. 1996. Jan;90(5): 491–495. doi: 10.1080/00034983.1996.11813074 PubMed DOI

Seblova V, Sadlova J, Vojtkova B, Votypka J, Carpenter S, Bates PA, et al.. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is capable of developing late stage infections of Leishmania enriettii. PLoS Negl Trop Dis. 2015;9(9): 1–15. doi: 10.1371/journal.pntd.0004060 PubMed DOI PMC

Paranaiba LF, Pinheiro LJ, Macedo DH, Menezes-Neto A, Torrecilhas AC, Tafuri WL, et al.. An overview on Leishmania (Mundinia) enriettii: biology, immunopathology, LRV and extracellular vesicles during the host–parasite interaction. Parasitology. 2018. Sep;145(10): 1265–1273. doi: 10.1017/S0031182017001810 PubMed DOI

Paraense WL. The Spread of Leishmania enriettii through the Body of the Guineapig. Trans R Soc Trop Med Hyg. 1953;47(6): 556–560. doi: 10.1016/s0035-9203(53)80008-8 PubMed DOI

Garin YJF, Sulahian A, Méneceur P, Pratlong F, Prina E, Gangneux JP, et al.. Experimental pathogenicity of a presumed monoxenous trypanosomatid isolated from humans in a murine model. J Eukaryot Microbiol. 2001;48(2): 170–176. doi: 10.1111/j.1550-7408.2001.tb00299.x PubMed DOI

Somboonpoonpol N. Parasite burden, distribution and imunopathology of Leishmania martiniquensis—infected BALB/c mice in different routes and time points. M. Sc. Thesis, Chulalongkorn University. 2016. Available from http://cuir.car.chula.ac.th/handle/123456789/60706

Intakhan N, Chanmol W, Kongkaew A, Somboon P, Bates MD, Bates PA, et al.. Experimental infection of Leishmania (Mundinia) martiniquensis in BALB/c mice and Syrian golden hamsters. Parasitol Res. 2020;119(9): 3041–3051. doi: 10.1007/s00436-020-06842-w PubMed DOI

Becvar T, Siriyasatien P, Bates P, Volf P, Sádlová J. Development of Leishmania (Mundinia) in guinea pigs. Parasites and Vectors. 2020;13: 181 Available from: doi: 10.1186/s13071-020-04039-9 PubMed DOI PMC

Killick-Kendrick R. Phlebotomine vectors of the leishmaniases: a review. Med Vet Entomol. 1990;4(1): 1–24. doi: 10.1111/j.1365-2915.1990.tb00255.x PubMed DOI

Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27(2): 123–147. doi: 10.1111/j.1365-2915.2012.01034.x PubMed DOI

Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA, et al.. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol [Internet]. 2011;41(5): 571–579. Available from: doi: 10.1016/j.ijpara.2010.12.008 PubMed DOI

Chanmol W, Jariyapan N, Somboon P, Bates MD, Bates PA. Development of Leishmania orientalis in the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) and the biting midge Culicoides soronensis (Diptera: Ceratopogonidae). Acta Trop. 2019;199 Available from: 10.1016/j.actatropica.2019.105157 PubMed DOI

Killick-Kendrick R. The biology and control of Phlebotomine sand flies. Clin Dermatol. 1999;17(3): 279–289. doi: 10.1016/s0738-081x(99)00046-2 PubMed DOI

Kostygov AY, Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol (Praha). 2017;64: 1–5. PubMed

Nieves E, Pimenta PFP. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). J Med Entomol. 2000;37(1): 134–140. doi: 10.1603/0022-2585-37.1.134 PubMed DOI

Guimarães VCFV, Pruzinova K, Sadlova J, Volfova V, Myskova J, Filho SPB, et al.. Lutzomyia migonei is a permissive vector competent for Leishmania infantum. Parasite Vector [Internet]. 2016;9(1):1–6. Available from: doi: 10.1186/s13071-016-1444-2 PubMed DOI PMC

Kanjanopas K, Siripattanapipong S, Ninsaeng U, Hitakarun A, Jitkaew S, Kaewtaphaya P, et al.. Sergentomyia (Neophlebotomus) gemmea, a potential vector of Leishmania siamensis in southern Thailand. BMC Infect Dis. 2013;13(1): 13–6. doi: 10.1186/1471-2334-13-333 PubMed DOI PMC

Seblova V, Sadlova J, Carpenter S, Volf P. Speculations on biting midges and other bloodsucking arthropods as alternative vectors of Leishmania. Parasite Vector. 2014;7(1): 222. doi: 10.1186/1756-3305-7-222 PubMed DOI PMC

Borkent A, Dominiak P. Catalog of the Biting Midges of the World (Diptera: Ceratopogonidae). Zootaxa. 2020;4787(1): 001–377. PubMed

Nayduch D, Cohnstaedt LW, Saski C, Lawson D, Kersey P, Fife M, et al.. Studying Culicoides vectors of BTV in the post-genomic era: Resources, bottlenecks to progress and future directions. Virus Res [Internet]. 2014;182: 43–9. Available from: doi: 10.1016/j.virusres.2013.12.009 PubMed DOI PMC

Carpenter S, Groschup MH, Garros C, Felippe-Bauer ML, Purse B V. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res [Internet]. 2013;100(1): 102–113. Available from: doi: 10.1016/j.antiviral.2013.07.020 PubMed DOI

Rangel EF, Lainson R. Proven and putative vectors of American cutaneous leishmaniasis in Brazil: Aspects of their biology and vectorial competence. Mem Inst Oswaldo Cruz. 2009;104(7). Available from: doi: 10.1590/s0074-02762009000700001 PubMed DOI

de Carvalho MR, Valença HF, da Silva FJ, de Pita-Pereira D, de Araújo Pereira T, Britto C, et al.. Natural Leishmania infantum infection in Migonemyia migonei (França, 1920) (Diptera:Psychodidae:Phlebotominae) the putative vector of visceral leishmaniasis in Pernambuco State, Brazil. Acta Trop. 2010;116(1): 108–110. doi: 10.1016/j.actatropica.2010.03.009 PubMed DOI

Lainson R, Rangel EF. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil—a review. Mem Inst Oswaldo Cruz. 2005;100: 811–827. doi: 10.1590/s0074-02762005000800001 PubMed DOI

Kweku MA, Odoom S, Puplampu N, Desewu K, Nuako GK, Gyan B, et al.. An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks. Glob Health Action. 2011;4. Available from: doi: 10.3402/gha.v4i0.5527 PubMed DOI PMC

Lewis DJ, Dyce AL. Taxonomy of the australasian phlebotominae (Diptera: Psychodidae) with revision of genus Sergentomyia from the region. Invertebr Syst. 1988;2(6): 755–804.

Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 2017; 24: 42. doi: 10.1051/parasite/2017041 PubMed DOI PMC

Maia C, Seblova V, Sadlova J, Votypka J, Volf P. Experimental transmission of Leishmania infantum by two major vectors: A comparison between a viscerotropic and a dermotropic strain. PLoS Negl Trop Dis. 2011;5(6): e1181. doi: 10.1371/journal.pntd.0001181 PubMed DOI PMC

Ozbel Y, Sanjoba C, Alten B, Asada M, Depaquit J, Matsumoto Y, et al.. Distribution and ecological aspects of sand fly (Diptera: Psychodidae) species in Sri Lanka. J Vector Ecol. 2011; 36(s1). Available from: doi: 10.1111/j.1948-7134.2011.00115.x PubMed DOI

Sadlova J, Dvorak V, Seblova V, Warburg A, Votypka J, Volf P. Sergentomyia schwetzi is not a competent vector for Leishmania donovani and other Leishmania species pathogenic to humans. Parasit Vectors. 2013;6(1): 186. Available from: http://www.parasitesandvectors.com/content/6/1/186. doi: 10.1186/1756-3305-6-186 PubMed DOI PMC

Sadlova J, Homola M, Myskova J, Jancarova M, Volf P. Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix. PLoS Negl Trop Dis. 2018;12(4): e0006382. doi: 10.1371/journal.pntd.0006382 PubMed DOI PMC

Maia C, Depaquit J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania? Parasite [Internet]. 2016;23:55. Available from: doi: 10.1051/parasite/2016062 PubMed DOI PMC

Lainson R, Shaw JJ. The Role of Animals in the Epidemiology of South American Leishmaniasis. In: Lumsden WHR, Ewans DA, editors. Biology of the Kinetoplastida Vol 2. London, New York: Academic Press; 1979. pp. 1–116.

Sadlova J, Myskova J, Lestinova T, Votypka J, Yeo M, Volf P. (2017): Leishmania donovani development in Phlebotomus argentipes: comparison of promastigote- and amastigote-initiated infections. Parasitology. 2017;144(4): 403–410. doi: 10.1017/S0031182016002067 PubMed DOI PMC

Serafim TD, Coutinho-Abreu IV, Oliveira F., Meneses C, Kamhawi S, Valenzuela JG. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. 2018; Nat Microbiol 3: 548–555. doi: 10.1038/s41564-018-0125-7 PubMed DOI PMC

Bates PA. Revising Leishmania’s life cycle. Nat Microbiol. 2018; 3: 529–530. doi: 10.1038/s41564-018-0154-2 PubMed DOI

Seblova V, Sadlova J, Carpenter S, Volf P. Development of Leishmania parasites in Culicoides nubeculosus (Diptera: Ceratopogonidae) and implications for screening vector competence. J Med Entomol [Internet]. 2012;49(5):967–70. Available from: doi: 10.1603/me12053 PubMed DOI

Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36: 1–9. doi: 10.1111/j.1948-7134.2011.00106.x PubMed DOI

Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, et al.. Genomic Confirmation of Hybridisation and Recent Inbreeding in a Vector-Isolated Leishmania Population. PLoS Genet. 2014;10(1): e1004092. doi: 10.1371/journal.pgen.1004092 PubMed DOI PMC

Myskova J, Votypka J, Volf P. Leishmania in Sand Flies: Comparison of Quantitative Polymerase Chain Reaction with Other Techniques to Determine the Intensity of Infection. J Med Entomol. 2008;45(1): 133–1388. doi: 10.1603/0022-2585(2008)45[133:lisfco]2.0.co;2 PubMed DOI

Sádlová J, Price HP, Smith BA, Votýpka J, Volf P, Smith DF. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12(12): 1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC

Rodgers MR, Popper SJ, Wirth DF. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp Parasitol. 1990;71(3): 267–275. doi: 10.1016/0014-4894(90)90031-7 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The development of L. major, L. donovani and L. martiniquensis, Leishmania currently emerging in Europe, in the sand fly species Phlebotomus perniciosus and P. tobbi

. 2024 Oct ; 18 (10) : e0012597. [epub] 20241015

Leishmania spp. in equids and their potential vectors in endemic areas of canine leishmaniasis

. 2024 Jul ; 18 (7) : e0012290. [epub] 20240718

Steppe lemmings and Chinese hamsters as new potential animal models for the study of the Leishmania subgenus Mundinia (Kinetoplastida: Trypanosomatidae)

. 2024 May ; 18 (5) : e0011897. [epub] 20240513

Experimental infections of sand flies and geckos with Leishmania (Sauroleishmania) adleri and Leishmania (S.) hoogstraali

. 2022 Aug 11 ; 15 (1) : 289. [epub] 20220811

Porcisia transmission by prediuresis of sand flies

. 2022 ; 12 () : 981071. [epub] 20220810

Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content

. 2022 Jun ; 16 (6) : e0010510. [epub] 20220624

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...