Experimental infections of sand flies and geckos with Leishmania (Sauroleishmania) adleri and Leishmania (S.) hoogstraali

. 2022 Aug 11 ; 15 (1) : 289. [epub] 20220811

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35953873

Grantová podpora
180220 Grantová Agentura, Univerzita Karlova
180220 Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 35953873
PubMed Central PMC9367110
DOI 10.1186/s13071-022-05417-1
PII: 10.1186/s13071-022-05417-1
Knihovny.cz E-zdroje

BACKGROUND: Species belonging to the subgenus Sauroleishmania are parasites of reptiles, and traditionally considered to be non-pathogenic to mammals. Knowledge of the development of these parasites in sand flies and their mechanism of transmission is currently lacking. The main aim of this study was to test the susceptibility of various sand fly species to infection by two Sauroleishmania species, focusing on the localization of parasites in the sand fly intestinal tract. METHODS: The development of Leishmania (Sauroleishmania [S.]) adleri and Leishmania (S.) hoogstraali was studied in six sand fly species (Phlebotomus orientalis, P. argentipes, P. sergenti, P. papatasi, P. duboscqi, Sergentomyia schwetzi). Sand flies were fed through a chick-skin membrane on blood containing Sauroleishmania promastigotes, and they were dissected at various time intervals post blood meal (PBM). Guts were examined microscopically for the presence of parasites, and the intensity and localizations of infections were recorded. Morphological forms of both Sauroleishmania species developing in P. orientalis were analyzed. Experimental infections of geckos using sand fly-derived promastigotes were also performed, and the reptiles were repeatedly examined for Sauroleishmania infection by xenodiagnosis and PCR analysis. RESULTS: High infection rates for both Sauroleishmania species were observed in P. orientalis and P. argentipes, with the parasites migrating anteriorly and undergoing a peripylarian type of development, including colonization of the stomodeal valve. Conversely, the development of L. (S.) adleri in P. sergenti, P. papatasi and Se. schwetzi was restricted to the sand fly hindgut (hypopylarian type of development). Five morphological forms were distinguished for both Sauroleishmania species developing in P. orientalis. All experimentally infected geckos scored negative for Sauroleishmania based on xenodiagnosis and molecular analysis. CONCLUSIONS: The results showed that Sauroleishmania promastigotes can undergo either a peripylarian or hypopylarian type of development in the sand fly intestinal tract, depending on the sand fly species infected. We demonstrated that P. argentipes and P. orientalis, two sand fly species known as permissive vectors for mammalian parasites of subgenus Leishmania, are also highly susceptible to Sauroleishmania as the parasites developed mature late-stage infections, including colonization of the sand fly stomodeal valve. Thus, the role of Phlebotomus sand flies in transmission of Sauroleishmania should be reconsidered and further investigated.

Zobrazit více v PubMed

Becvar T, Vojtkova B, Siriyasatien P, Votypka J, Modry D, Jahn P, et al. Experimental transmission of Leishmania (Mundinia) parasites by biting midges (Diptera: Ceratopogonidae) PLoS Pathog. 2021;17:e1009654. doi: 10.1371/journal.ppat.1009654. PubMed DOI PMC

Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2016;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI

Akhoundi M, Kuhls K, Cannet A, Votypka J, Marty P, Delaunay P, Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC

Belova EM. Reptiles and their importance in the epidemiology of leishmaniasis. Bull World Health Organ. 1971;44:553–560. PubMed PMC

Wilson VCLC, Southgate BA. Lizard Leishmania. In: Lumsden WHR, Evans DA, editors. Biology of the Kinetoplastida. London: Academic Press; 1979. pp. 241–268.

Killick-Kendrick R, Lainson R, Rioux JA, Saf'janova VM. In: Leishmania: Taxonomie et Phylogenèse. Rioux JA, editor. Application Éco-epidemiologiques (Colloque International du CNRS/INSERM, 1984), MEE, Montpellier; 1986. pp. 143–148.

Rioux JA, Knoepfler LP, Martini A, Callot J, Kremer M. Présence en France de Leishmania tarentolae Wenyon, 1921 Parasite du gecko Tarentola mauritanica (L 1758) Ann Parasitol Hum Comp. 1969;44:115–118. doi: 10.1051/parasite/1969441115. DOI

Edeson JFB, Himo J. Leishmania sp in the blood of a lizard (Agama stellio) from Lebanon. Trans R Soc Trop Med Hyg. 1973;67:27. doi: 10.1016/0035-9203(73)90293-9. PubMed DOI

Telford SR. Evolutionary implications of Leishmania amastigotes in circulating blood cells of lizards. Parasitology. 1979;79:317–324. doi: 10.1017/S0031182000053725. PubMed DOI

Paperna I, Boulard Y, Hering-Hagenbeck SH, Landau I. Description and ultrastructure of Leishmania zuckermani n sp amastigotes detected within the erythrocytes of the South African gecko Pachydactylus turneri Gray, 1864. Parasite. 2001;8:349–353. doi: 10.1051/parasite/2001084349. PubMed DOI

Telford SR. Hemoparasites of the Reptilia. Boca Raton: CRC Press; 2009.

Minter DM, Wijers DJB. Studies on the Vector of Kala-Azar in Kenya: IV experimental evidence. Ann Trop Med Parasitol. 1963;57:24–31. doi: 10.1080/00034983.1963.11686158. PubMed DOI

Adler S, Theodor O. Observations on Leishmania ceramodactyli N.SP. Trans R Soc Trop Med Hyg. 1929;22:343–55.

Ticha L, Kykalova B, Sadlova J, Gramiccia M, Gradoni L, Volf P. Development of various Leishmania (Sauroleishmania) tarentolae strains in three Phlebotomus species. Microorganisms. 2021;9:2256. doi: 10.3390/microorganisms9112256. PubMed DOI PMC

Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37:1097–1106. doi: 10.1016/j.ijpara.2007.04.003. PubMed DOI PMC

Lainson R, Shaw JJ. Evolution, classification and geographical distribution. In: Peters W, Killick-Kendrick R, editors. The leishmaniases in biology and medicine. London: Academic Press; 1987. pp. 1–120.

Heisch RB. On Leishmania adleri sp nov from lacertid lizards (Latastia sp) in Kenya. Ann Trop Med Parasitol. 1958;52:68–71. doi: 10.1080/00034983.1958.11685846. PubMed DOI

McMillan B. Leishmaniasis in the Sudan Republic. 22. Leishmania hoogstraali sp n in the gecko. J Parasitol. 1965;51:336–9. 10.2307/3275947. PubMed

Sadlova J, Dvorak V, Seblova V, Warburg A, Votypka J, Volf P. Sergentomyia schwetzi is not a competent vector for Leishmania donovani and other Leishmania species pathogenic to humans. Parasit Vectors. 2013;6:1–10. doi: 10.1186/1756-3305-6-186. PubMed DOI PMC

Pimenta PFP, Saraiva EMB, Rowton E, Modi GB, Garraway LA, Beverley SM, et al. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA. 1994;91:9155–9159. doi: 10.1073/pnas.91.19.9155. PubMed DOI PMC

Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:S1–9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI

Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45:133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI

Sadlova J, Seblova V, Votypka J, Warburg A, Volf P. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: a new laboratory model. Parasit Vectors. 2015;8:1–8. doi: 10.1186/s13071-015-0765-x. PubMed DOI PMC

Diamond LS, Herman CM. Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture. J Parasitol. 1954;40:195–202. doi: 10.2307/3274299. DOI

El Tai NO, Osman OF, El Fari M, Presber W, Schönian G. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg. 2000;94:575–579. doi: 10.1016/S0035-9203(00)90093-2. PubMed DOI

Quate LW. Phlebotomus sandflies of the Paloich area in the Sudan (Diptera, Psychodidae) J Med Entomol. 1964;1:213–268. doi: 10.1093/jmedent/1.3.213. PubMed DOI

Pombi M, Giacomi A, Barlozzari G, Mendoza-Roldan J, Macrì G, Otranto D, et al. Molecular detection of Leishmania (Sauroleishmania) tarentolae in human blood and Leishmania (Leishmania) infantum in Sergentomyia minuta: unexpected host-parasite contacts. Med Vet Entomol. 2020;34:470–475. doi: 10.1111/mve.12464. PubMed DOI

Latrofa MS, Mendoza-Roldan JA, Manoj RRS, Dantas-Torres F, Otranto D. A duplex real-time PCR assay for the detection and differentiation of Leishmania infantum and Leishmania tarentolae in vectors and potential reservoir hosts. Entomol Gen. 2021;41:543–551. doi: 10.1127/entomologia/2021/1178. DOI

Mendoza-Roldan JA, Latrofa MS, Iatta R, Manoj RRS, Panarese R, Annoscia G, et al. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: hindrances and opportunities. Parasit Vectors. 2021;14:1–12. doi: 10.1186/s13071-020-04505-4. PubMed DOI PMC

Leishmania AS. In: Advances in Parasitology. Dawes B, editor. New York: Academic Press; 1964. pp. 35–96. PubMed

Sadlova J, Homola M, Myskova J, Jancarova M, Volf P. Refractoriness of Sergentomyia schwetzi to Leishmania spp is mediated by the peritrophic matrix. PLoS Negl Trop Dis. 2018;12:e0006382. doi: 10.1371/journal.pntd.0006382. PubMed DOI PMC

Dostalova A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:1–12. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC

Kamhawi S, Modi GB, Pimenta PFP, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121:25–33. doi: 10.1017/S0031182099006125. PubMed DOI

Chajbullinova A, Votypka J, Sadlova J, Kvapilova K, Seblova V, Kreisinger J, et al. The development of Leishmania turanica in sand flies and competition with L major. Parasit Vectors. 2012;5:1–8. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC

Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, et al. A role for insect galectins in parasite survival. Cell. 2004;119:329–341. doi: 10.1016/j.cell.2004.10.009. PubMed DOI

Previato JO, Jones C, Wait R, Routier F, Saraiva E, Mendonça-Previato L. Leishmania adleri, a lizard parasite, expresses structurally similar glycoinositolphospholipids to mammalian Leishmania. Glycobiology. 1997;7:687–695. doi: 10.1093/glycob/7.5.687. PubMed DOI

Raymond F, Boisvert S, Roy G, Ritt JF, Legare D, Isnard A, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147. doi: 10.1093/nar/gkr834. PubMed DOI PMC

Hall AR, Blakeman JT, Eissa AM, Chapman P, Morales-García AL, Stennett L, et al. Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chem Sci. 2020;11:10973–10983. doi: 10.1039/D0SC03298K. DOI

Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis. 2019;13:e0007424. doi: 10.1371/journal.pntd.0007424. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace