Steppe lemmings and Chinese hamsters as new potential animal models for the study of the Leishmania subgenus Mundinia (Kinetoplastida: Trypanosomatidae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38739677
PubMed Central
PMC11090356
DOI
10.1371/journal.pntd.0011897
PII: PNTD-D-24-00003
Knihovny.cz E-zdroje
- MeSH
- Arvicolinae * parazitologie MeSH
- Cricetulus MeSH
- křečci praví MeSH
- Leishmania * klasifikace MeSH
- leishmanióza * parazitologie MeSH
- modely nemocí na zvířatech * MeSH
- myši inbrední BALB C * MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.
Zobrazit více v PubMed
Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018; 145(4), 430–442. PubMed
Leishmaniasis [Internet]. [cited 2023 Feb 28]. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
Akilov OE, Khachemoune A, Hasan T. Clinical manifestations and classification of Old World cutaneous leishmaniasis. International Journal of Dermatology. 2007, 46(2), 132–142. doi: 10.1111/j.1365-4632.2007.03154.x PubMed DOI
Loría-Cervera EN, Andrade-Narváez FJ. Review: Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo. 2014; 56(1):1–11. PubMed PMC
Sadlova J, Becvar T, Volf P. Transmission of Enigmatic Mundinia Parasites Journal of Infectious Diseases & Therapy. 2022; 10(5).
Kwakye-Nuako G, Mosore MT, Boakye D, Bates PA. Description, Biology, and Medical Significance of Leishmania (Mundinia) chancei N. Sp. (Kinetoplastea: Trypanosomatidae) From Ghana and Leishmania (Mundinia) procaviensis N. Sp. (Kinetoplastea: Trypanosomatidae) From Namibia. J Parasitol. 2023; 109(1): 43–50. doi: 10.1645/22-53 PubMed DOI
Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA, et al.. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol. 2011; 41(5), 571–579. doi: 10.1016/j.ijpara.2010.12.008 PubMed DOI
Becvar T, Vojtkova B, Siriyasatien P, Votypka J, Modry D, Jahn P, et al.. Experimental transmission of Leishmania (Mundinia) parasites by biting midges (Diptera: Ceratopogonidae). PLoS Pathog. 2021; 17(6), e1009654. doi: 10.1371/journal.ppat.1009654 PubMed DOI PMC
Seblova V, Sadlova J, Vojtkova B, Votypka J, Carpenter S, Bates PA, et al.. The Biting Midge Culicoides sonorensis (Diptera: Ceratopogonidae) Is Capable of Developing Late Stage Infections of Leishmania enriettii. PLoS Negl Trop Dis. 2015; 9(9), e0004060. doi: 10.1371/journal.pntd.0004060 PubMed DOI PMC
Chanmol W, Jariyapan N, Somboon P, Bates MD, Bates PA. Development of Leishmania orientalis in the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) and the biting midge Culicoides soronensis (Diptera: Ceratopogonidae). Acta Trop. 2019; 199, 105157. doi: 10.1016/j.actatropica.2019.105157 PubMed DOI
Muniz J, Medina H. Leishmaniose tegumentar do cobaio, Leishmania enriettii n. sp. Hospital (Rio J). 1948; 33(1), 7–25. PubMed
Rose K, Curtis J, Baldwin T, Mathis A, Kumar B, Sakthianandeswaren A, et al.. Cutaneous leishmaniasis in red kangaroos: Isolation and characterisation of the causative organisms. Int J Parasitol. 2004; 34(6), 655–664. doi: 10.1016/j.ijpara.2004.03.001 PubMed DOI
Dougall A, Shilton C, Low Choy J, Alexander B, Walton S. New reports of Australian cutaneous leishmaniasis in Northern Australian macropods. Epidemiol Infect. 2009; 45(11), 679–684. doi: 10.1017/S0950268809002313 PubMed DOI
Grove SS. Leishmaniasis in South West Africa/Namibia to date. South African Med J. 1989;75(6):290–2. PubMed
Kwakye-Nuako G, Mosore MT, Duplessis C, Bates MD, Puplampu N, Mensah-Attipoe I, et al.. First isolation of a new species of Leishmania responsible for human cutaneous leishmaniasis in Ghana and classification in the Leishmania enriettii complex. Int J Parasitol. 2015; 45(11), 679–684. PubMed
Bualert L, Charungkiattikul W, Thongsuksai P, Mungthin M, Siripattanapipong S, Khositnithikul R, et al.. Case report: Autochthonous disseminated dermal and visceral leishmaniasis in an AIDS patient, Southern Thailand, caused by Leishmania siamensis. Am J Trop Med Hyg. 2012; 86(5), 821–824. PubMed PMC
Pothirat T, Tantiworawit A, Chaiwarith R, Jariyapan N, Wannasan A, Siriyasatien P, et al.. First Isolation of Leishmania from Northern Thailand: Case Report, Identification as Leishmania martiniquensis and Phylogenetic Position within the Leishmania enriettii Complex. PLoS Negl Trop Dis. 2014; 8(12), e3339. doi: 10.1371/journal.pntd.0003339 PubMed DOI PMC
Lobsiger L, Müller N, Schweizer T, Frey CF, Wiederkehr D, Zumkehr B, et al.. An autochthonous case of cutaneous bovine leishmaniasis in Switzerland. Vet Parasitol. 2010; doi: 10.1016/j.vetpar.2010.01.022 PubMed DOI
Müller N, Welle M, Lobsiger L, Stoffel MH, Boghenbor KK, Hilbe M, et al.. Occurrence of Leishmania sp. in cutaneous lesions of horses in Central Europe. Vet Parasitol. 2009; 169(3–4), 408–414. PubMed
Reuss SM, Dunbar MD, Calderwood Mays MB, Owen JL, Mallicote MF, Archer LL, et al.. Autochthonous Leishmania siamensis in horse, Florida, USA. Emerging Infectious Diseases. 2012. 18(9), 1545–1547. PubMed PMC
Supsrisunjai C, Kootiratrakarn T, Puangpet P, Bunnag T, Chaowalit P, Wessagowit V. Case report: Disseminated autochthonous dermal leishmaniasis caused by Leishmania siamensis (PCM2 Trang) in a patient from central Thailand infected with human immunodeficiency virus. Am J Trop Med Hyg. 2017; 96(5), 1160–1163. PubMed PMC
Jariyapan N, Daroontum T, Jaiwong K, Chanmol W, Intakhan N, Sor-Suwan S, et al.. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasites and Vectors. 2018; 11, 1–9. PubMed PMC
Anugulruengkitt S, Songtaweesin WN, Thepnarong N, Tangthanapalakul A, Sitthisan M, Chatproedprai S, et al.. Case Report: Simple Nodular Cutaneous Leishmaniasis Caused by Autochthonous Leishmania (Mundinia) orientalis in an 18-Month-Old Girl: The First Pediatric Case in Thailand and Literature Review. Am J Trop Med Hyg. 2023; 108(1):44–50. doi: 10.4269/ajtmh.22-0385 PubMed DOI PMC
Manomat J, Leelayoova S, Bualert L, Tan-ariya P, Siripattanapipong S, Mungthin M, et al.. Prevalence and risk factors associated with Leishmania infection in Trang Province, southern Thailand. PLoS Negl Trop Dis. 2017; 11(11), e0006095. doi: 10.1371/journal.pntd.0006095 PubMed DOI PMC
Srivarasat S, Brownell N, Siriyasatien P, Noppakun N, Asawanonda P, Rattanakorn K, et al.. Case Report: Autochthonous Disseminated Cutaneous, Mucocutaneous, and Visceral Leishmaniasis Caused by Leishmania martiniquensis in a Patient with HIV/AIDS from Northern Thailand and Literature Review. Am J Trop Med Hyg. 2022;107(6):1196–1202. PubMed PMC
Kweku MA, Odoom S, Puplampu N, Desewu K, Nuako GK, Gyan B, et al.. An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks. Global health action. 2011, 4(1), 5527. doi: 10.3402/gha.v4i0.5527 PubMed DOI PMC
Chusri S, Thammapalo S, Silpapojakul K, Siriyasatien P. Animal reservoirs and potential vectors of Leishmania siamensis in southern Thailand. Southeast Asian J Trop Med Public Health. 2014; 45(1), 13. PubMed
Chaves LF, Hernandez MJ, Dobson AP, Pascual M. Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol. 2007; 23(7), 311–316. doi: 10.1016/j.pt.2007.05.003 PubMed DOI
Smyly HJ, Young CW. The experimental transmission of leishmaniasis to animals. Proc Soc Exp Biol Med. 1924;21:354–6.
Hindle E, Patton WS. Reports from the Royal Society’s Kala Azar Commission in China. No. 2.—Experiments Bearing on the Susceptibility of the Striped Hamster (Cricetulus griseus) to Leishmania of Chinese Kala Azar. Proc R Soc B Biol Sci. 1926;374–9.
Young CW, Smyly HJ, Brown C. Experimental kala azar in a hamster, Cricetulus griseus M.Edw. Am J Hyg. 1926;6(2):254–75.
Meleney HE. The Histopathology of Kala-Azar in the Hamster, Monkey, and Man. Am J Pathol. 1925; 1(2), 147. PubMed PMC
Vojtkova B, Spitzova T, Votypka J, Lestinova T, Kominkova I, Hajkova M, et al.. Central Asian rodents as model animals for Leishmania major and Leishmania donovani research. Microorganisms. 2020; 8(9), 1440. doi: 10.3390/microorganisms8091440 PubMed DOI PMC
Lun ZR, Wu MS, Chen YF, Wang JY, Zhou XN, Liao LF, et al.. Visceral leishmaniasis in China: An endemic disease under Control. Clin Microbiol Rev. 2015; 28(4), 987–1004. doi: 10.1128/CMR.00080-14 PubMed DOI PMC
Sadlova J, Vojtkova B, Lestinova T, Becvar T, Frynta D, Benallal KE, et al.. Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major. Pathogens. 2023;12(4):1–10. doi: 10.3390/pathogens12040614 PubMed DOI PMC
Sadlova J, Vojtkova B, Becvar T, Lestinova T, Spitzova T, Bates P, et al.. Host competence of the African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania donovani from Ethiopia and L. (Mundinia) sp. from Ghana. Int J Parasitol Parasites Wildl. 2020; 11, 40–45. doi: 10.1016/j.ijppaw.2019.12.002 PubMed DOI PMC
Pruzinova K, Sadlova J, Myskova J, Lestinova T, Janda J, Volf P. Leishmania mortality in sand fly blood meal is not species-specific and does not result from direct effect of proteinases. Parasites and Vectors. 2018;11(1):1–9. PubMed PMC
Dostálová A, Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites and Vectors. 2012, 5(1), 1–12. PubMed PMC
Sadlova J, Volf P. Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res. 2009;337:313–25. PubMed PMC
Walters LL. Leishmania Differentiation in Natural and Unnatural Sand Fly Hosts. J Eukaryot Microbiol. 1993; 40(2), 196–206. PubMed
Čiháková J, Volf P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997; 91(3), 267–27. PubMed
Sadlova J, Bacikova D, Becvar T, Vojtkova B, England M, Shaw J, et al.. Porcisia transmission by prediuresis of sand flies. Front Cell Infect Microbiol. 2022; 12:1–14. PubMed PMC
Belehu A, Turk JL. Establishment of cutaneous Leishmania enriettii infection in hamsters. Infect Immun. 1976; 13(4), 1235–1241 PubMed PMC
Paranaiba LF, Pinheiro LJ, Macedo DH, Menezes-Neto A, Torrecilhas AC, Tafuri WL, et al.. An overview on Leishmania (Mundinia) enriettii: Biology, immunopathology, LRV and extracellular vesicles during the host-parasite interaction. Parasitology. 2018; 145(10), 1265–1273. doi: 10.1017/S0031182017001810 PubMed DOI
Thomaz-Soccol V. New isolation of Leishmania enriettii Muniz and Medina, 1948 in Parana State, Brazil, 50 years after the first description, and isoenzymatic polymorphism of the L. enriettii taxon. Ann Trop Med Parasitol. 1996; 90(5), 491–495. PubMed
Paraense WL. The spread of Leishmania enriettii through the body of the guinea pig. Trans R Soc Trop Med Hyg. 1953; 47(6), 556–60. PubMed
Becvar T, Siriyasatien P, Bates P, Volf P, Sádlová J. Development of Leishmania (Mundinia) in guinea pigs. Parasites and Vectors. 2020; 13(1), 1–6. PubMed PMC
Intakhan N, Chanmol W, Kongkaew A, Somboon P, Bates MD, Bates PA, et al.. Experimental infection of Leishmania (Mundinia) martiniquensis in BALB/c mice and Syrian golden hamsters. Parasitol Res. 2020; 19, 3041–3051. doi: 10.1007/s00436-020-06842-w PubMed DOI
Wilson ME, Jeronimo SMB, Pearson RD. Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog. 2005; 38(4), 147–160. PubMed
Sadlova J, Seblova V, Votypka J, Warburg A, Volf P. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: A new laboratory model. Parasites and Vectors. 2015; 2015; 8, 1–8. doi: 10.1186/s13071-015-0765-x PubMed DOI PMC
Garin YJF, Sulahian A, Méneceur P, Pratlong F, Prina E, Gangneux JP, et al.. Experimental pathogenicity of a presumed monoxenous trypanosomatid isolated from humans in a murine model. J Eukaryot Microbiol. 2001; 48(2), 170–176. doi: 10.1111/j.1550-7408.2001.tb00299.x PubMed DOI
Somboonpoonpol N. Parasite burden, distribution and imunopathology of Leishmania martiniquensis—infected BALB/c mice in different routes and time points. Chulalongkorn University; 2016.
Falú MA, Fernanda M, Bustos G, María C, Ramoneda P, Raspi EM De, et al.. Susceptibility of different mouse strains to Leishmania amazonensis infection. 2007; 15(5):334–33.
Sriwongpan P, Nedsuwan S, Manomat J, Charoensakulchai S, Lacharojana K, Sankwan J, et al.. Prevalence and associated risk factors of leishmania infection among immunocompetent hosts, a community based study in Chiang Rrai, Tthailand. PLoS Negl Trop Dis. 2021; 15(7), e0009545. PubMed PMC
Vojtkova B, Frynta D, Spitzova T, Lestinova T, Votypka J, Volf P, et al.. Repeated Sand Fly Bites of Infected BALB/c Mice Enhance the Development of Leishmania lesions. Front Trop Dis. 2021; 2, 745104.
Valverde JG, Paun A, Inbar E, Romano A, Lewis M, Ghosh K, et al.. Increased transmissibility of Leishmania donovani from the mammalian host to vector sand flies after multiple exposures to sand fly bites. J Infect Dis. 2017;215(8):1285–93. PubMed PMC
Sadlova J, Vojtkova B, Hrncirova K, Lestinova T, Spitzova T, Becvar T, et al.. Host competence of African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania major. Int J Parasitol Parasites Wildl. 2019; 8, 118–126. PubMed PMC