Host competence of African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania major
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30740304
PubMed Central
PMC6356118
DOI
10.1016/j.ijppaw.2019.01.004
PII: S2213-2244(18)30182-2
Knihovny.cz E-zdroje
- Klíčová slova
- Arvicanthis, Grass rats, Leishmaniases, Mastomys, Multimammate mice, Wild reservoir, Xenodiagnosis,
- Publikační typ
- časopisecké články MeSH
Cutaneous leishmaniasis caused by Leishmania major is a typical zoonosis circulating in rodents. In Sub-Saharan Africa the reservoirs remain to be identified, although L. major has been detected in several rodent species including members of the genera Arvicanthis and Mastomys. However, differentiation of true reservoir hosts from incidental hosts requires in-depth studies both in the field and in the laboratory, with the best method for testing the infectiousness of hosts to biting vectors being xenodiagnosis. Here we studied experimental infections of three L. major strains in Arvicanthis neumanni, A. niloticus and Mastomys natalensis; the infections were initiated either with sand fly-derived or with culture-derived Leishmania promastigotes. Inoculated rodents were monitored for several months and tested by xenodiagnoses for their infectiousness to Phlebotomus duboscqi, the natural vector of L. major in Sub-Saharan Africa. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to P. duboscqi was tested by pair-wise comparisons. Three L. major strains used significantly differed in infectivity: the Middle Eastern strain infected a low proportion of rodents, while two Sub-Saharan isolates (LV109, LV110) infected a high percentage of animals and LV110 also produced higher parasite loads in all host species. All three rodent species maintained parasites of the LV109 strain for 20-25 weeks and were able to infect P. duboscqi without apparent health complications: infected animals showed only temporary swellings or changes of pigmentation at the site of inoculation. However, the higher infection rates, more generalized distribution of parasites and longer infectiousness period to sand flies in M. natalensis suggest that this species plays the more important reservoir role in the life cycle of L. major in Sub-Saharan Africa. Arvicanthis species may serve as potential reservoirs in seasons/periods of low abundance of Mastomys.
Zobrazit více v PubMed
Ashford R.W. Leishmaniasis reservoirs and their significance in control. Clin. Dermatol. 1996;14:523–532. PubMed
Ashford R.W. What it takes to be a reservoir host. Belg. J. Zool. 1997;127:85–90.
Ashford R.W. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 2000;30:1269–1281. PubMed
Belkaid Y., Kamhawi S., Modi G., Valenzuela J., Noben-Trauth N., Rowton E., Ribeiro J., Sacks D. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the Mouse ear dermis. J. Exp. Med. 1998;188(10):1941–1953. PubMed PMC
Belkaid Y., Von Stebut E., Mendez S., Lira R., Caler E., Bertholet S., Udey M.C., Sacks D. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 2002;168:3992–4000. PubMed
Cassan C., Diagne C.A., Tatard C., Gauthier P., Dalecky A., Ba K., Kane M., Niang Y., Diallo M., Sow A., Brouat C., Bañuls A.-L. Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Neglected Trop. Dis. 2018;12(6):e0006615. PubMed PMC
Chaves L.F., Hernandez M.-J., Dobson A.P., Pascual M. Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol. 2007;23(7):311–316. PubMed
Courtenay O., Quinnell R.J., Garcez L.M., Shaw J.J., Dye C. Infectiousness in a cohort of Brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission. J. Infect. Dis. 2002;186:1314–1320. PubMed
Courtenay O., Peters N.C., Rogers M.E., Bern C. Combining epidemiology with basic biology of sand flies, parasites, ad hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathog. 2017;13(10):e1006571. PubMed PMC
Desjeux P. World Health Organisation; Geneva: 1996. Information on the Epidemiology and Control of the Leishmaniases by Country and Territory; p. 47. WHO/LEISH/91.30. 1991.
Dobigny G., Tatard C., Gauthier P., Ba K., Duplantier J.M., Granjon L., Kergoat G.J. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and Sub-Saharan open habitats pleistocene history. PLoS One. 2013;8(12) PubMed PMC
Dougall A.M., Alexander B., Holt D.C., Harris T., Sultan A.H., Bates P.A., Rose K., Walton S.F. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int. J. Parasitol. 2011;41:571–579. PubMed
Elfari M., Schnur L.F., Strelkova M.V., Eisenberger C.L., Jacobson R.L., Greenblatt C.L., Presber W., Schӧnian G. Genetic and biological diversity among populations of Leishmania major from Central Asia, the Middle East and Africa. Microb. Infect. 2005;7:93–103. PubMed
Ghawar W., Toumi A., Snoussi M.-A., Chlif S., Zaatour A., Boukthir A., Hamida N.B.H., Chemkhi J., Diouani M.F., Ben-Salah A. Leishmania major infection among Psammomys obesus and Meriones shawi: reservoirs of zoonotic cutaneous leishmaniasis in Sidi Bouzid (Central Tunisia) Vector-Borne Zoonot. 2011;11(12):1561–1568. PubMed PMC
Githure J.I., Ngumbi P.M., Anjili C.O., Lugalia R., Mwanyumba P.M., Kinoti G.K., Koech D.K. Animal reservoirs of leishmaniasis in Marigat, Baringo district, Kenya. East Afr. Med. J. 1996;73(1):44–47. PubMed
Granjon L., Ducroz J.-F. Genus Arvicanthis Grass rats. In: Happold D.C.D., editor. Mammals of Africa: Volume III. Bloomsbury Publishing; London: 2013. pp. 379–380.
Hare J.G., Dorsey K.M., Armstrong K.L., Burge J.R., Kinnamon K.E. Comparative fecundity and survival rates of Phlebotomus papatasi sandflies membrane fed on blood from eight mammal species. J. Med. Entomol. 2001;15(2):189–196. PubMed
Harrington L.C., Edman J.D., Scott T.W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 2001;38:411–422. PubMed
Hoogstraal H., Dietlein D.R. Leishmaniasis in the Sudan republic: recent results. Bull. World Health Organ. 1964;31:137–143. PubMed PMC
Killick-Kendrick M., Killick-Kendrick R. The initial establishment of sand fly colonies. Parasitologia. 1991;33(Suppl. 1):313–320. PubMed
Kimblin N., Peters N., Debrabant A., Secundino N., Egen J., Lawyer P., Fay M.P., Kamhawi S., Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc. Natl. Acad. Sci. U.S.A. 2008;105:10125–10130. PubMed PMC
Lecompte E., Aplin K., Denys Ch, Catzeflis F., Chades M., Chevret P. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol. Biol. 2008;8:199. PubMed PMC
Leirs H. Genus Mastomys multimammate mice. In: Happold D.C.D., editor. Mammals of Africa: Volume III. Bloomsbury Publishing; London: 2013. pp. 460–471.
Loría-Cervera E.N., Andrade-Narváez F.J. Animal models for the study of leishmaniasis immunology. Rev. Inst. Med. Trop. Sao Paulo. 2014;56(1):1–11. PubMed PMC
Lyimo I.N., Ferguson H.M. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 2009;25:189–196. PubMed
Macedo - Silva V.P., Martins D.R.A., Souza De Queiroz P.V., Pinheiro M.P.G., Freire C.C.M., Queiroz J.W., Dupnik K.M., Pearson R.D., Wilson M.E., Jeronimo S.M.B. Feeding preferences of Lutzomyia longipalpis (Diptera: Psychodidae), the sand fly vector, for Leishmania infantum (Kinetoplastida: Trypanosomatidae) J. Med. Entomol. 2014;51(1):237–244. PubMed PMC
Maia C., Seblova V., Sadlova J., Votypka J., Volf P. Experimental transmission of Leishmania infantum by two major vectors: a comparison between a viscerotropic and a dermotropic strain. PLoS Neglected Trop. Dis. 2011:35. 5e1181. PubMed PMC
Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sand flies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27(2):123–147. PubMed
Michalsky E.M., Rocha M.F., da Rocha Lima A.C., Franca-Silva J.C., Pires M.Q., Oliveira F.S., Pacheco R.S., dos Santos S.L., Barata R.A., Romanha A.J., Fortes-Dias C.L., Dias E.S. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyia longipalpis phlebotomine sand flies. Vet. Parasitol. 2007;147:67–76. PubMed
Miller E., Warburg A., Novikov I., Hailu A., Volf P., Seblova V., Huppert A. Quantifying the contribution of hosts wit different parasites concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS Neglected Trop. Dis. 2014;8(10):e3288. PubMed PMC
Molina R., Jiménez M.I., Cruz I., Iriso A., Martín-Martín I., Sevillano O., Melero S., Bernal J. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012;190:268–271. PubMed
Mutinga M.J., Kyai F.M., Kamau C., Omogo D.M. Epidemiology of leishmaniasis in Kenya. 3. Host preference studies using various types of animal baits at animal burrows in Marigat, Baringo district. Insect Sci. Appl. 1986;7:191–197.
Pulliam H.R. Sources, sinks, and population regulation. Am. Nat. 1988;132:652–661.
Sadlova J., Hajmova M., Volf P. Phlebotomus (Adlerius) halepensis vector competence for Leishmania major and Le. tropica. Med. Vet. Entomol. 2003;17:1–7. PubMed
Sadlova J., Price H.P., Smith B.A., Votypka J., Volf P., Smith D.F. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell. Microbiol. 2010;12:1765–1779. CMI1507 [pii] PubMed PMC
Sadlova J., Seblova V., Votypka J., Warburg A., Volf P. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: a new laboratory model. Parasites Vectors. 2015;8 PubMed PMC
Sarfati M., Krasnov B.R., Ghazaryan L., Khokhlova I.S., Fielden L.J., Degen A.A. Energy costs of blood digestion in a host-specific haematophagous parasite. J. Exp. Biol. 2005;208:2489–2496. PubMed
Secundino N.F.C., de Freitas V.C., Monteiro C.C., Pires A.C.A.M., David B.A., Pimenta P.F.P. The transmission of Leishmania infantum chagasi by the bite of the Lutzomyia longipalpis to two different vertebrates. Parasites Vectors. 2012;5:20. PubMed PMC
Silva E.S., Gontijo C.M.F., Melo M.N. Contribution of molecular techniques to the epidemiology of neotropical Leishmania species. Trends Parasitol. 2005;21(12):550–552. PubMed
Svobodova M., Votýpka J., Nicolas L., Volf P. Leishmania tropica in the black rat (Rattus rattus): persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microb. Infect. 2013;5(5):361–364. PubMed
Travi B.L., Arteaga L.T., León A.P., Adler G.H. Susceptibility of spiny rats (Proechimys semispinosus) to Leishmania (Viannia) panamensis and Leishmania (Leishmania) chagasi. Mem. Inst. Oswaldo Cruz. 2002;97(6):887–892. PubMed
Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl. 1):S1–S9. PubMed
Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research