Host competence of African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania major

. 2019 Apr ; 8 () : 118-126. [epub] 20190124

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30740304
Odkazy

PubMed 30740304
PubMed Central PMC6356118
DOI 10.1016/j.ijppaw.2019.01.004
PII: S2213-2244(18)30182-2
Knihovny.cz E-zdroje

Cutaneous leishmaniasis caused by Leishmania major is a typical zoonosis circulating in rodents. In Sub-Saharan Africa the reservoirs remain to be identified, although L. major has been detected in several rodent species including members of the genera Arvicanthis and Mastomys. However, differentiation of true reservoir hosts from incidental hosts requires in-depth studies both in the field and in the laboratory, with the best method for testing the infectiousness of hosts to biting vectors being xenodiagnosis. Here we studied experimental infections of three L. major strains in Arvicanthis neumanni, A. niloticus and Mastomys natalensis; the infections were initiated either with sand fly-derived or with culture-derived Leishmania promastigotes. Inoculated rodents were monitored for several months and tested by xenodiagnoses for their infectiousness to Phlebotomus duboscqi, the natural vector of L. major in Sub-Saharan Africa. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to P. duboscqi was tested by pair-wise comparisons. Three L. major strains used significantly differed in infectivity: the Middle Eastern strain infected a low proportion of rodents, while two Sub-Saharan isolates (LV109, LV110) infected a high percentage of animals and LV110 also produced higher parasite loads in all host species. All three rodent species maintained parasites of the LV109 strain for 20-25 weeks and were able to infect P. duboscqi without apparent health complications: infected animals showed only temporary swellings or changes of pigmentation at the site of inoculation. However, the higher infection rates, more generalized distribution of parasites and longer infectiousness period to sand flies in M. natalensis suggest that this species plays the more important reservoir role in the life cycle of L. major in Sub-Saharan Africa. Arvicanthis species may serve as potential reservoirs in seasons/periods of low abundance of Mastomys.

Zobrazit více v PubMed

Ashford R.W. Leishmaniasis reservoirs and their significance in control. Clin. Dermatol. 1996;14:523–532. PubMed

Ashford R.W. What it takes to be a reservoir host. Belg. J. Zool. 1997;127:85–90.

Ashford R.W. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 2000;30:1269–1281. PubMed

Belkaid Y., Kamhawi S., Modi G., Valenzuela J., Noben-Trauth N., Rowton E., Ribeiro J., Sacks D. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the Mouse ear dermis. J. Exp. Med. 1998;188(10):1941–1953. PubMed PMC

Belkaid Y., Von Stebut E., Mendez S., Lira R., Caler E., Bertholet S., Udey M.C., Sacks D. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 2002;168:3992–4000. PubMed

Cassan C., Diagne C.A., Tatard C., Gauthier P., Dalecky A., Ba K., Kane M., Niang Y., Diallo M., Sow A., Brouat C., Bañuls A.-L. Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Neglected Trop. Dis. 2018;12(6):e0006615. PubMed PMC

Chaves L.F., Hernandez M.-J., Dobson A.P., Pascual M. Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol. 2007;23(7):311–316. PubMed

Courtenay O., Quinnell R.J., Garcez L.M., Shaw J.J., Dye C. Infectiousness in a cohort of Brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission. J. Infect. Dis. 2002;186:1314–1320. PubMed

Courtenay O., Peters N.C., Rogers M.E., Bern C. Combining epidemiology with basic biology of sand flies, parasites, ad hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathog. 2017;13(10):e1006571. PubMed PMC

Desjeux P. World Health Organisation; Geneva: 1996. Information on the Epidemiology and Control of the Leishmaniases by Country and Territory; p. 47. WHO/LEISH/91.30. 1991.

Dobigny G., Tatard C., Gauthier P., Ba K., Duplantier J.M., Granjon L., Kergoat G.J. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and Sub-Saharan open habitats pleistocene history. PLoS One. 2013;8(12) PubMed PMC

Dougall A.M., Alexander B., Holt D.C., Harris T., Sultan A.H., Bates P.A., Rose K., Walton S.F. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int. J. Parasitol. 2011;41:571–579. PubMed

Elfari M., Schnur L.F., Strelkova M.V., Eisenberger C.L., Jacobson R.L., Greenblatt C.L., Presber W., Schӧnian G. Genetic and biological diversity among populations of Leishmania major from Central Asia, the Middle East and Africa. Microb. Infect. 2005;7:93–103. PubMed

Ghawar W., Toumi A., Snoussi M.-A., Chlif S., Zaatour A., Boukthir A., Hamida N.B.H., Chemkhi J., Diouani M.F., Ben-Salah A. Leishmania major infection among Psammomys obesus and Meriones shawi: reservoirs of zoonotic cutaneous leishmaniasis in Sidi Bouzid (Central Tunisia) Vector-Borne Zoonot. 2011;11(12):1561–1568. PubMed PMC

Githure J.I., Ngumbi P.M., Anjili C.O., Lugalia R., Mwanyumba P.M., Kinoti G.K., Koech D.K. Animal reservoirs of leishmaniasis in Marigat, Baringo district, Kenya. East Afr. Med. J. 1996;73(1):44–47. PubMed

Granjon L., Ducroz J.-F. Genus Arvicanthis Grass rats. In: Happold D.C.D., editor. Mammals of Africa: Volume III. Bloomsbury Publishing; London: 2013. pp. 379–380.

Hare J.G., Dorsey K.M., Armstrong K.L., Burge J.R., Kinnamon K.E. Comparative fecundity and survival rates of Phlebotomus papatasi sandflies membrane fed on blood from eight mammal species. J. Med. Entomol. 2001;15(2):189–196. PubMed

Harrington L.C., Edman J.D., Scott T.W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 2001;38:411–422. PubMed

Hoogstraal H., Dietlein D.R. Leishmaniasis in the Sudan republic: recent results. Bull. World Health Organ. 1964;31:137–143. PubMed PMC

Killick-Kendrick M., Killick-Kendrick R. The initial establishment of sand fly colonies. Parasitologia. 1991;33(Suppl. 1):313–320. PubMed

Kimblin N., Peters N., Debrabant A., Secundino N., Egen J., Lawyer P., Fay M.P., Kamhawi S., Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc. Natl. Acad. Sci. U.S.A. 2008;105:10125–10130. PubMed PMC

Lecompte E., Aplin K., Denys Ch, Catzeflis F., Chades M., Chevret P. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol. Biol. 2008;8:199. PubMed PMC

Leirs H. Genus Mastomys multimammate mice. In: Happold D.C.D., editor. Mammals of Africa: Volume III. Bloomsbury Publishing; London: 2013. pp. 460–471.

Loría-Cervera E.N., Andrade-Narváez F.J. Animal models for the study of leishmaniasis immunology. Rev. Inst. Med. Trop. Sao Paulo. 2014;56(1):1–11. PubMed PMC

Lyimo I.N., Ferguson H.M. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 2009;25:189–196. PubMed

Macedo - Silva V.P., Martins D.R.A., Souza De Queiroz P.V., Pinheiro M.P.G., Freire C.C.M., Queiroz J.W., Dupnik K.M., Pearson R.D., Wilson M.E., Jeronimo S.M.B. Feeding preferences of Lutzomyia longipalpis (Diptera: Psychodidae), the sand fly vector, for Leishmania infantum (Kinetoplastida: Trypanosomatidae) J. Med. Entomol. 2014;51(1):237–244. PubMed PMC

Maia C., Seblova V., Sadlova J., Votypka J., Volf P. Experimental transmission of Leishmania infantum by two major vectors: a comparison between a viscerotropic and a dermotropic strain. PLoS Neglected Trop. Dis. 2011:35. 5e1181. PubMed PMC

Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sand flies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27(2):123–147. PubMed

Michalsky E.M., Rocha M.F., da Rocha Lima A.C., Franca-Silva J.C., Pires M.Q., Oliveira F.S., Pacheco R.S., dos Santos S.L., Barata R.A., Romanha A.J., Fortes-Dias C.L., Dias E.S. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyia longipalpis phlebotomine sand flies. Vet. Parasitol. 2007;147:67–76. PubMed

Miller E., Warburg A., Novikov I., Hailu A., Volf P., Seblova V., Huppert A. Quantifying the contribution of hosts wit different parasites concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS Neglected Trop. Dis. 2014;8(10):e3288. PubMed PMC

Molina R., Jiménez M.I., Cruz I., Iriso A., Martín-Martín I., Sevillano O., Melero S., Bernal J. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012;190:268–271. PubMed

Mutinga M.J., Kyai F.M., Kamau C., Omogo D.M. Epidemiology of leishmaniasis in Kenya. 3. Host preference studies using various types of animal baits at animal burrows in Marigat, Baringo district. Insect Sci. Appl. 1986;7:191–197.

Pulliam H.R. Sources, sinks, and population regulation. Am. Nat. 1988;132:652–661.

Sadlova J., Hajmova M., Volf P. Phlebotomus (Adlerius) halepensis vector competence for Leishmania major and Le. tropica. Med. Vet. Entomol. 2003;17:1–7. PubMed

Sadlova J., Price H.P., Smith B.A., Votypka J., Volf P., Smith D.F. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell. Microbiol. 2010;12:1765–1779. CMI1507 [pii] PubMed PMC

Sadlova J., Seblova V., Votypka J., Warburg A., Volf P. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: a new laboratory model. Parasites Vectors. 2015;8 PubMed PMC

Sarfati M., Krasnov B.R., Ghazaryan L., Khokhlova I.S., Fielden L.J., Degen A.A. Energy costs of blood digestion in a host-specific haematophagous parasite. J. Exp. Biol. 2005;208:2489–2496. PubMed

Secundino N.F.C., de Freitas V.C., Monteiro C.C., Pires A.C.A.M., David B.A., Pimenta P.F.P. The transmission of Leishmania infantum chagasi by the bite of the Lutzomyia longipalpis to two different vertebrates. Parasites Vectors. 2012;5:20. PubMed PMC

Silva E.S., Gontijo C.M.F., Melo M.N. Contribution of molecular techniques to the epidemiology of neotropical Leishmania species. Trends Parasitol. 2005;21(12):550–552. PubMed

Svobodova M., Votýpka J., Nicolas L., Volf P. Leishmania tropica in the black rat (Rattus rattus): persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microb. Infect. 2013;5(5):361–364. PubMed

Travi B.L., Arteaga L.T., León A.P., Adler G.H. Susceptibility of spiny rats (Proechimys semispinosus) to Leishmania (Viannia) panamensis and Leishmania (Leishmania) chagasi. Mem. Inst. Oswaldo Cruz. 2002;97(6):887–892. PubMed

Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl. 1):S1–S9. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The development of L. major, L. donovani and L. martiniquensis, Leishmania currently emerging in Europe, in the sand fly species Phlebotomus perniciosus and P. tobbi

. 2024 Oct ; 18 (10) : e0012597. [epub] 20241015

Steppe lemmings and Chinese hamsters as new potential animal models for the study of the Leishmania subgenus Mundinia (Kinetoplastida: Trypanosomatidae)

. 2024 May ; 18 (5) : e0011897. [epub] 20240513

Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major

. 2023 Apr 18 ; 12 (4) : . [epub] 20230418

Experimental feeding of Sergentomyia minuta on reptiles and mammals: comparison with Phlebotomus papatasi

. 2023 Apr 13 ; 16 (1) : 126. [epub] 20230413

Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research

. 2020 Sep 20 ; 8 (9) : . [epub] 20200920

Host competence of the African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania donovani from Ethiopia and L. (Mundinia) sp. from Ghana

. 2020 Apr ; 11 () : 40-45. [epub] 20191206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...