Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
23-06299S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000759
Czech Ministry of Education, ERD funds, project CePaViP
778298
European Union's Horizon 2020 RIIP-LeiSHield MATI-RISE research and innovation programme under the Marie Skłodowska Curie grant agreement
PubMed
37111500
PubMed Central
PMC10143307
DOI
10.3390/pathogens12040614
PII: pathogens12040614
Knihovny.cz E-resources
- Keywords
- Leishmania, Meriones, Phlebotomus, asymptomatic infection, reservoir host, xenodiagnosis,
- Publication type
- Journal Article MeSH
Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.
See more in PubMed
WHO [(accessed on 11 April 2023)]. Available online: https://www.who.int/health-topics/leishmaniasis.
Yurchenko V., Chistyakov D.S., Akhmadishina L.V., Lukashev A.N., Sádlová J., Strelkova M.V. Revisiting epidemiology of leishmaniasis in Central Asia: Lessons learnt. Parasitology. 2023;150:129–136. doi: 10.1017/S0031182022001640. PubMed DOI PMC
Aoun K., Bouratbine A. Cutaneous Leishmaniasis in North Africa: A review. Parasite. 2014;21:14. doi: 10.1051/parasite/2014014. PubMed DOI PMC
Ashford R.W. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 2000;30:1269–1281. doi: 10.1016/S0020-7519(00)00136-3. PubMed DOI
Sadlova J., Vojtkova B., Hrncirova K., Lestinova T., Spitzova T., Becvar T., Votypka J., Bates P., Volf P. Host competence of African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania major. Int. J. Parasitol. Parasites Wildl. 2019;8:118–126. doi: 10.1016/j.ijppaw.2019.01.004. PubMed DOI PMC
Ghawar W., Toumi A., Snoussi M.-A., Chlif S., Zaatour A., Boukthir A., Hamida N.B.H., Chernkhi J., Diouani M.F., Ben-Saleh A. Leishmania major Infection among Psammomys obesus and Meriones shawi: Reservoirs of Zoonotic Cutaneous Leishmaniasis in Sidi Bouzid (Central Tunisia) Vector-Borne Zoonotic Dis. 2011;11:1561–1568. doi: 10.1089/vbz.2011.0712. PubMed DOI PMC
Fichet-Calvet E., Jomâa I., Ben Ismail R., Ashford R.W. Leishmania major infection in the fat sand rat Psammomys obesus in Tunisia: Interaction of host and parasite populations. Ann. Trop. Med. Parasitol. 2003;97:593–603. doi: 10.1179/000349803225001517. PubMed DOI
Akhavan A.A., Yaghoobi-Ershadi M.R., Khamesipour A., Mirhendi H., Alimohammadian M.H., Rassi Y., Arandian M.H., Jafari R., Abdoli H., Shareghi N., et al. Dynamics of Leishmania infection rates in Rhombomys opimus (Rodentia: Gerbillinae) population of an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Bull. La Soc. Pathol. Exot. 2010;103:84–89. doi: 10.1007/s13149-010-0044-1. PubMed DOI
Akhoundi M., Mohebali M., Asadi M., Mahmodi M.R., Amraei K., Mirzaei A. Molecular characterization of Leishmania spp. in reservoir hosts in endemic foci of zoonotic cutaneous leishmaniasis in Iran. Folia Parasitol. 2013;60:218–224. doi: 10.14411/fp.2013.024. PubMed DOI
Singh O.P., Hasker E., Sacks D., Boelaert M., Sundar S. Asymptomatic Leishmania infection: A new challenge for Leishmania control. Clin. Infect. Dis. 2014;58:1424–1429. doi: 10.1093/cid/ciu102. PubMed DOI PMC
Michel G., Pomares C., Ferrua B., Marty P. Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Trop. 2011;119:69–75. doi: 10.1016/j.actatropica.2011.05.012. PubMed DOI
Stauch A., Sarkar R.R., Picado A., Ostyn B., Sundar S., Rijal S., Boelaert M., Dujardin J.-C., Duerr H.-P. Visceral leishmaniasis in the Indian subcontinent: Modelling epidemiology and control. PLoS Negl. Trop. Dis. 2011;5:1–12. doi: 10.1371/journal.pntd.0001405. PubMed DOI PMC
Quinnell R.J., Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–1934. doi: 10.1017/S0031182009991156. PubMed DOI
Beniklef R., Aoun K., Boudrissa K., Ben Abid M., Cherif K., Aissi W., Benrekta S., Boubidi S.C., Späth G.F., Bouratbine A., et al. Cutaneous Leishmaniasis in Algeria; Highlight on the Focus of M’Sila. Microorganisms. 2021;9:962. doi: 10.3390/microorganisms9050962. PubMed DOI PMC
Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5:140197. doi: 10.1098/rsob.140197. PubMed DOI PMC
Sadlova J., Myskova J., Lestinova T., Votypka J., Yeo M., Volf P. Leishmania donovani development in Phlebotomus argentipes: Comparison of promastigote-and amastigote-initiated infections. Parasitology. 2017;144:403–410. doi: 10.1017/S0031182016002067. PubMed DOI PMC
Sadlova J., Seblova V., Votypka J., Warburg A., Volf P. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: A new laboratory model. Parasite Vector. 2015;8:158. doi: 10.1186/s13071-015-0765-x. PubMed DOI PMC
Rodgers M.R., Popper S.J., Wirth D.F. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp. Parasitol. 1990;71:267–275. doi: 10.1016/0014-4894(90)90031-7. PubMed DOI
Pekár S., Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93. doi: 10.1111/eth.12713. DOI
Halekoh U., Højsgaard S., Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15:1–11. doi: 10.18637/jss.v015.i02. DOI
Fichet-Calvet E. Meriones shawi Shaw’s Jird. In: Happold D.C.D., editor. Mammals of Africa: Rodents, Hares and Rabbits. Volume 3. Bloomsbury Publishing; London, UK: 2013. pp. 338–339.
Samy A.M., Annajar B.B., Dokhan M.R., Boussaa S., Peterson A.T. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya. PLoS Negl. Trop. Dis. 2016;10:e0004381. doi: 10.1371/journal.pntd.0004381. PubMed DOI PMC
Derbali M., Chelbi I., Ben Hadj Ahmed S., Zhioua E. Leishmania major Yakimoff et Schokhor, 1914 (Kinetoplastida: Trypanosomatidae) chez Meriones shawi Duvernoy, 1842 (Rodentia: Gerbillidae): Persistance de l’infection du mérion et de son infectivité pour le phlébotome vecteur Phlebotomus (Phlebotomus) papatasi Scopoli, 1786 (Diptera: Psychodidae) Bull. La Soc. Pathol. Exot. 2012;105:399–402. doi: 10.1007/s13149-012-0259-4. PubMed DOI
Ashford R.W. Leishmaniasis reservoirs and their significance in control. Clin. Dermatol. 1996;14:523–532. doi: 10.1016/0738-081X(96)00041-7. PubMed DOI
Strelkova M.V. Progress in studies on Central Asian foci of zoonotic cutaneous leishmaniasis: A review. Folia Parasitol. 1996;43:1–6. PubMed
Akhavan A.A., Mirhendi H., Khamesipour A., Alimohammadian M.H., Rassi Y., Bates P., Kamhawi S., Valenzuela J.G., Arandian M.H., Abdoli H., et al. Leishmania species: Detection and identification by nested PCR assay from skin samples of rodent reservoirs. Exp. Parasitol. 2010;126:552–556. doi: 10.1016/j.exppara.2010.06.003. PubMed DOI PMC
Kamhawi S. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2000;2:1765–1773. doi: 10.1016/S1286-4579(00)01331-9. PubMed DOI
Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC
Kimblin N., Peters N., Debrabant A., Secundino N., Egen J., Lawyer P., Fay M.P., Kamhawi S., Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc. Natl. Acad. Sci. USA. 2008;105:10125–10130. doi: 10.1073/pnas.0802331105. PubMed DOI PMC
Maia C., Seblova V., Sadlova J., Votypka J., Volf P. Experimental transmission of Leishmania infantum by two major vectors: A comparison between a viscerotropic and a dermotropic strain. PLoS Negl. Trop. Dis. 2011;5:e1181. doi: 10.1371/journal.pntd.0001181. PubMed DOI PMC
Belkaid Y., Mendez S., Lira R., Kadambi N., Milon G., Sacks D. Natural Model of Leishmania major Infection Reveals a Prolonged “Silent” Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity. J. Immunol. 2000;165:969–977. doi: 10.4049/jimmunol.165.2.969. PubMed DOI
Côrtes D.F., Carneiro M.B., Santos L.M., Souza T.C., Maioli T.U., Duz A.L., Ramos-Jorge M.L., Afonso L.C., Carneiro C., Vieira L.Q. Low and high-dose intradermal infection with Leishmania major and Leishmania amazonensis in C57BL/6 mice. Mem. Inst. Oswaldo Cruz. 2010;105:736–745. doi: 10.1590/S0074-02762010000600002. PubMed DOI
Vojtkova B., Spitzova T., Votypka J., Lestinova T., Kominkova I., Hajkova M., Santos-Mateus D., Miles M.A., Volf P., Sadlova J. Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research. Microorganisms. 2020;8:1440. doi: 10.3390/microorganisms8091440. PubMed DOI PMC
Doehl J.S.P., Bright Z., Dey S., Davies H., Magson J., Brown N., Romano A., Dalton J.E., Pinto A.I., Pitchford J.W., et al. Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nat. Comm. 2017;28:57. doi: 10.1038/s41467-017-00103-8. PubMed DOI PMC
Jiménez M., González E., Martín-Martín I., Hernández S., Molina R. Could wild rabbits (Oryctolagus cuniculus) be reservoirs for Leishmania infantum in the focus of Madrid, Spain? Vet. Parasitol. 2014;202:296–300. doi: 10.1016/j.vetpar.2014.03.027. PubMed DOI
Molina R., Jiménez M.I., Cruz I., Iriso A., Martín-Martín I., Sevillano O., Melero S., Bernal J. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012;190:268–271. doi: 10.1016/j.vetpar.2012.05.006. PubMed DOI
Gradoni L., Pozio E., Gramiccia M., Maroli M., Bettini S. Leishmaniasis in Tuscany (Italy): VII. Studies on the role of the black rat, Rattus rattus, in the epidemiology of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1983;77:427–431. doi: 10.1016/0035-9203(83)90102-5. PubMed DOI
De Oliveira A.R., Pinheiro G.R.G., Tinoco H.P., Loyola M.E., Coelho C.M., Dias E.S., Michalsky Monteiro E., de Oliveira Lara e Silva F., Pessanha A.T., Maia Souza A.M., et al. Competence of non-human primates to transmit Leishmania infantum to the invertebrate vector Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 2019;13:e0007313. doi: 10.1371/journal.pntd.0007313. PubMed DOI PMC
Mol J.P.S., Soave S.A., Turchetti A.P., Pinheiro G.R.G., Pessanha A.T., Malta M.C.C., Tinoco H.P., Figueiredo L.A., Gontijo N.F., Paixão T.A., et al. Transmissibility of Leishmania infantum from maned wolves (Chrysocyon brachyurus) and bush dogs (Speothos venaticus) to Lutzomyia longipalpis. Vet. Parasitol. 2015;212:86–91. doi: 10.1016/j.vetpar.2015.08.024. PubMed DOI
Travi B.L., Osorio Y., Guarın N., Cadena H. Leishmania (Leishmania) chagasi: Clinical and Parasitological Observations in Experimentally Infected Didelphis marsupialis, Reservoir of New World Visceral Leishmaniasis. Exp. Parasitol. 1998;88:73–75. doi: 10.1006/expr.1998.4214. PubMed DOI
Courtenay O., Peters N.C., Rogers M.E., Bern C. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathog. 2017;13:e1006571. doi: 10.1371/journal.ppat.1006571. PubMed DOI PMC
Ashford R.W., Kohestany K.A., Karimzad M.A. Cutaneous leishmaniasis in Kabul: Observations on a ‘prolonged epidemic’. Ann. Trop. Med. Parasitol. 1992;86:361–371. doi: 10.1080/00034983.1992.11812679. PubMed DOI
Christensen H.A., Herrer A. Detection of Leishmania braziliensis by xenodiagnosis. Trans. R. Soc. Trop. Med. Hyg. 1972;66:798–799. doi: 10.1016/0035-9203(72)90098-3. PubMed DOI
Svobodová M., Votýpka J., Nicolas L., Volf P. Leishmania tropica in the black rat (Rattus rattus): Persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microbes Infect. 2003;5:361–364. doi: 10.1016/S1286-4579(03)00046-7. PubMed DOI