• This record comes from PubMed

Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major

. 2023 Apr 18 ; 12 (4) : . [epub] 20230418

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
23-06299S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000759 Czech Ministry of Education, ERD funds, project CePaViP
778298 European Union's Horizon 2020 RIIP-LeiSHield MATI-RISE research and innovation programme under the Marie Skłodowska Curie grant agreement

Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.

See more in PubMed

WHO [(accessed on 11 April 2023)]. Available online: https://www.who.int/health-topics/leishmaniasis.

Yurchenko V., Chistyakov D.S., Akhmadishina L.V., Lukashev A.N., Sádlová J., Strelkova M.V. Revisiting epidemiology of leishmaniasis in Central Asia: Lessons learnt. Parasitology. 2023;150:129–136. doi: 10.1017/S0031182022001640. PubMed DOI PMC

Aoun K., Bouratbine A. Cutaneous Leishmaniasis in North Africa: A review. Parasite. 2014;21:14. doi: 10.1051/parasite/2014014. PubMed DOI PMC

Ashford R.W. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 2000;30:1269–1281. doi: 10.1016/S0020-7519(00)00136-3. PubMed DOI

Sadlova J., Vojtkova B., Hrncirova K., Lestinova T., Spitzova T., Becvar T., Votypka J., Bates P., Volf P. Host competence of African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania major. Int. J. Parasitol. Parasites Wildl. 2019;8:118–126. doi: 10.1016/j.ijppaw.2019.01.004. PubMed DOI PMC

Ghawar W., Toumi A., Snoussi M.-A., Chlif S., Zaatour A., Boukthir A., Hamida N.B.H., Chernkhi J., Diouani M.F., Ben-Saleh A. Leishmania major Infection among Psammomys obesus and Meriones shawi: Reservoirs of Zoonotic Cutaneous Leishmaniasis in Sidi Bouzid (Central Tunisia) Vector-Borne Zoonotic Dis. 2011;11:1561–1568. doi: 10.1089/vbz.2011.0712. PubMed DOI PMC

Fichet-Calvet E., Jomâa I., Ben Ismail R., Ashford R.W. Leishmania major infection in the fat sand rat Psammomys obesus in Tunisia: Interaction of host and parasite populations. Ann. Trop. Med. Parasitol. 2003;97:593–603. doi: 10.1179/000349803225001517. PubMed DOI

Akhavan A.A., Yaghoobi-Ershadi M.R., Khamesipour A., Mirhendi H., Alimohammadian M.H., Rassi Y., Arandian M.H., Jafari R., Abdoli H., Shareghi N., et al. Dynamics of Leishmania infection rates in Rhombomys opimus (Rodentia: Gerbillinae) population of an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Bull. La Soc. Pathol. Exot. 2010;103:84–89. doi: 10.1007/s13149-010-0044-1. PubMed DOI

Akhoundi M., Mohebali M., Asadi M., Mahmodi M.R., Amraei K., Mirzaei A. Molecular characterization of Leishmania spp. in reservoir hosts in endemic foci of zoonotic cutaneous leishmaniasis in Iran. Folia Parasitol. 2013;60:218–224. doi: 10.14411/fp.2013.024. PubMed DOI

Singh O.P., Hasker E., Sacks D., Boelaert M., Sundar S. Asymptomatic Leishmania infection: A new challenge for Leishmania control. Clin. Infect. Dis. 2014;58:1424–1429. doi: 10.1093/cid/ciu102. PubMed DOI PMC

Michel G., Pomares C., Ferrua B., Marty P. Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Trop. 2011;119:69–75. doi: 10.1016/j.actatropica.2011.05.012. PubMed DOI

Stauch A., Sarkar R.R., Picado A., Ostyn B., Sundar S., Rijal S., Boelaert M., Dujardin J.-C., Duerr H.-P. Visceral leishmaniasis in the Indian subcontinent: Modelling epidemiology and control. PLoS Negl. Trop. Dis. 2011;5:1–12. doi: 10.1371/journal.pntd.0001405. PubMed DOI PMC

Quinnell R.J., Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–1934. doi: 10.1017/S0031182009991156. PubMed DOI

Beniklef R., Aoun K., Boudrissa K., Ben Abid M., Cherif K., Aissi W., Benrekta S., Boubidi S.C., Späth G.F., Bouratbine A., et al. Cutaneous Leishmaniasis in Algeria; Highlight on the Focus of M’Sila. Microorganisms. 2021;9:962. doi: 10.3390/microorganisms9050962. PubMed DOI PMC

Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI

Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5:140197. doi: 10.1098/rsob.140197. PubMed DOI PMC

Sadlova J., Myskova J., Lestinova T., Votypka J., Yeo M., Volf P. Leishmania donovani development in Phlebotomus argentipes: Comparison of promastigote-and amastigote-initiated infections. Parasitology. 2017;144:403–410. doi: 10.1017/S0031182016002067. PubMed DOI PMC

Sadlova J., Seblova V., Votypka J., Warburg A., Volf P. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: A new laboratory model. Parasite Vector. 2015;8:158. doi: 10.1186/s13071-015-0765-x. PubMed DOI PMC

Rodgers M.R., Popper S.J., Wirth D.F. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp. Parasitol. 1990;71:267–275. doi: 10.1016/0014-4894(90)90031-7. PubMed DOI

Pekár S., Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93. doi: 10.1111/eth.12713. DOI

Halekoh U., Højsgaard S., Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15:1–11. doi: 10.18637/jss.v015.i02. DOI

Fichet-Calvet E. Meriones shawi Shaw’s Jird. In: Happold D.C.D., editor. Mammals of Africa: Rodents, Hares and Rabbits. Volume 3. Bloomsbury Publishing; London, UK: 2013. pp. 338–339.

Samy A.M., Annajar B.B., Dokhan M.R., Boussaa S., Peterson A.T. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya. PLoS Negl. Trop. Dis. 2016;10:e0004381. doi: 10.1371/journal.pntd.0004381. PubMed DOI PMC

Derbali M., Chelbi I., Ben Hadj Ahmed S., Zhioua E. Leishmania major Yakimoff et Schokhor, 1914 (Kinetoplastida: Trypanosomatidae) chez Meriones shawi Duvernoy, 1842 (Rodentia: Gerbillidae): Persistance de l’infection du mérion et de son infectivité pour le phlébotome vecteur Phlebotomus (Phlebotomus) papatasi Scopoli, 1786 (Diptera: Psychodidae) Bull. La Soc. Pathol. Exot. 2012;105:399–402. doi: 10.1007/s13149-012-0259-4. PubMed DOI

Ashford R.W. Leishmaniasis reservoirs and their significance in control. Clin. Dermatol. 1996;14:523–532. doi: 10.1016/0738-081X(96)00041-7. PubMed DOI

Strelkova M.V. Progress in studies on Central Asian foci of zoonotic cutaneous leishmaniasis: A review. Folia Parasitol. 1996;43:1–6. PubMed

Akhavan A.A., Mirhendi H., Khamesipour A., Alimohammadian M.H., Rassi Y., Bates P., Kamhawi S., Valenzuela J.G., Arandian M.H., Abdoli H., et al. Leishmania species: Detection and identification by nested PCR assay from skin samples of rodent reservoirs. Exp. Parasitol. 2010;126:552–556. doi: 10.1016/j.exppara.2010.06.003. PubMed DOI PMC

Kamhawi S. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2000;2:1765–1773. doi: 10.1016/S1286-4579(00)01331-9. PubMed DOI

Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC

Kimblin N., Peters N., Debrabant A., Secundino N., Egen J., Lawyer P., Fay M.P., Kamhawi S., Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc. Natl. Acad. Sci. USA. 2008;105:10125–10130. doi: 10.1073/pnas.0802331105. PubMed DOI PMC

Maia C., Seblova V., Sadlova J., Votypka J., Volf P. Experimental transmission of Leishmania infantum by two major vectors: A comparison between a viscerotropic and a dermotropic strain. PLoS Negl. Trop. Dis. 2011;5:e1181. doi: 10.1371/journal.pntd.0001181. PubMed DOI PMC

Belkaid Y., Mendez S., Lira R., Kadambi N., Milon G., Sacks D. Natural Model of Leishmania major Infection Reveals a Prolonged “Silent” Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity. J. Immunol. 2000;165:969–977. doi: 10.4049/jimmunol.165.2.969. PubMed DOI

Côrtes D.F., Carneiro M.B., Santos L.M., Souza T.C., Maioli T.U., Duz A.L., Ramos-Jorge M.L., Afonso L.C., Carneiro C., Vieira L.Q. Low and high-dose intradermal infection with Leishmania major and Leishmania amazonensis in C57BL/6 mice. Mem. Inst. Oswaldo Cruz. 2010;105:736–745. doi: 10.1590/S0074-02762010000600002. PubMed DOI

Vojtkova B., Spitzova T., Votypka J., Lestinova T., Kominkova I., Hajkova M., Santos-Mateus D., Miles M.A., Volf P., Sadlova J. Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research. Microorganisms. 2020;8:1440. doi: 10.3390/microorganisms8091440. PubMed DOI PMC

Doehl J.S.P., Bright Z., Dey S., Davies H., Magson J., Brown N., Romano A., Dalton J.E., Pinto A.I., Pitchford J.W., et al. Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nat. Comm. 2017;28:57. doi: 10.1038/s41467-017-00103-8. PubMed DOI PMC

Jiménez M., González E., Martín-Martín I., Hernández S., Molina R. Could wild rabbits (Oryctolagus cuniculus) be reservoirs for Leishmania infantum in the focus of Madrid, Spain? Vet. Parasitol. 2014;202:296–300. doi: 10.1016/j.vetpar.2014.03.027. PubMed DOI

Molina R., Jiménez M.I., Cruz I., Iriso A., Martín-Martín I., Sevillano O., Melero S., Bernal J. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012;190:268–271. doi: 10.1016/j.vetpar.2012.05.006. PubMed DOI

Gradoni L., Pozio E., Gramiccia M., Maroli M., Bettini S. Leishmaniasis in Tuscany (Italy): VII. Studies on the role of the black rat, Rattus rattus, in the epidemiology of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1983;77:427–431. doi: 10.1016/0035-9203(83)90102-5. PubMed DOI

De Oliveira A.R., Pinheiro G.R.G., Tinoco H.P., Loyola M.E., Coelho C.M., Dias E.S., Michalsky Monteiro E., de Oliveira Lara e Silva F., Pessanha A.T., Maia Souza A.M., et al. Competence of non-human primates to transmit Leishmania infantum to the invertebrate vector Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 2019;13:e0007313. doi: 10.1371/journal.pntd.0007313. PubMed DOI PMC

Mol J.P.S., Soave S.A., Turchetti A.P., Pinheiro G.R.G., Pessanha A.T., Malta M.C.C., Tinoco H.P., Figueiredo L.A., Gontijo N.F., Paixão T.A., et al. Transmissibility of Leishmania infantum from maned wolves (Chrysocyon brachyurus) and bush dogs (Speothos venaticus) to Lutzomyia longipalpis. Vet. Parasitol. 2015;212:86–91. doi: 10.1016/j.vetpar.2015.08.024. PubMed DOI

Travi B.L., Osorio Y., Guarın N., Cadena H. Leishmania (Leishmania) chagasi: Clinical and Parasitological Observations in Experimentally Infected Didelphis marsupialis, Reservoir of New World Visceral Leishmaniasis. Exp. Parasitol. 1998;88:73–75. doi: 10.1006/expr.1998.4214. PubMed DOI

Courtenay O., Peters N.C., Rogers M.E., Bern C. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathog. 2017;13:e1006571. doi: 10.1371/journal.ppat.1006571. PubMed DOI PMC

Ashford R.W., Kohestany K.A., Karimzad M.A. Cutaneous leishmaniasis in Kabul: Observations on a ‘prolonged epidemic’. Ann. Trop. Med. Parasitol. 1992;86:361–371. doi: 10.1080/00034983.1992.11812679. PubMed DOI

Christensen H.A., Herrer A. Detection of Leishmania braziliensis by xenodiagnosis. Trans. R. Soc. Trop. Med. Hyg. 1972;66:798–799. doi: 10.1016/0035-9203(72)90098-3. PubMed DOI

Svobodová M., Votýpka J., Nicolas L., Volf P. Leishmania tropica in the black rat (Rattus rattus): Persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microbes Infect. 2003;5:361–364. doi: 10.1016/S1286-4579(03)00046-7. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...