Quantifying the contribution of hosts with different parasite concentrations to the transmission of visceral leishmaniasis in Ethiopia

. 2014 Oct ; 8 (10) : e3288. [epub] 20141030

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25356795

BACKGROUND: An important factor influencing the transmission dynamics of vector-borne diseases is the contribution of hosts with different parasitemia (no. of parasites per ml of blood) to the infected vector population. Today, estimation of this contribution is often impractical since it relies exclusively on limited-scale xenodiagnostic or artificial feeding experiments (i.e., measuring the proportion of vectors that become infected after feeding on infected blood/host). METHODOLOGY: We developed a novel mechanistic model that facilitates the quantification of the contribution of hosts with different parasitemias to the infection of the vectors from data on the distribution of these parasitemias within the host population. We applied the model to an ample data set of Leishmania donovani carriers, the causative agent of visceral leishmaniasis in Ethiopia. RESULTS: Calculations facilitated by the model quantified the host parasitemias that are mostly responsible for the infection of vector, the sand fly Phlebotomus orientalis. Our findings indicate that a 3.2% of the most infected people were responsible for the infection of between 53% and 79% (mean - 62%) of the infected sand fly vector population. SIGNIFICANCE: Our modeling framework can easily be extended to facilitate the calculation of the contribution of other host groups (such as different host species, hosts with different ages) to the infected vector population. Identifying the hosts that contribute most towards infection of the vectors is crucial for understanding the transmission dynamics, and planning targeted intervention policy of visceral leishmaniasis as well as other vector borne infectious diseases (e.g., West Nile Fever).

Zobrazit více v PubMed

Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, et al. (1997) Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc Natl Acad Sci USA 94: 338–342. PubMed PMC

Nguyet MN, Duong TH, Trung VT, Nguyen TH, Tran CN, et al. (2013) Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 110: 9072–9077. PubMed PMC

Abbasi I, Aramin S, Hailu A, Shiferaw W, Kassahun A, et al. (2013) Evaluation of PCR procedures for detecting and quantifying Leishmania donovani DNA in large numbers of dried human blood samples from a visceral leishmaniasis focus in northern Ethiopia. BMC Infect Dis 13: 153. PubMed PMC

Courtenay O, Carson C, Calvo-Bado L, Garcez LM, Quinnell RJ (2014) Heterogeneities in Leishmania infantum infection: using skin parasite burdens to identify highly infectious dogs. PLoS Negl Trop Dis 8: e2583. PubMed PMC

Mary C, Faraut F, Drogoul MP, Xeridat B, Schleinitz N, et al. (2006) Reference values for Leishmania infantum parasitemia in different clinical presentations: quantitative polymerase chain reaction for therapeutic monitoring and patient follow-up. Am J Trop Med Hyg 75: 858–863. PubMed

Seblova V, Volfova V, Dvorak V, Pruzinova K, Votypka J, et al. (2013) Phlebotomus orientalis sand flies from two geographically distant Ethiopian localities: biology, genetic analyses, and susceptibility to Leishmania donovani . PLoS Negl Trop Dis 7: e2187. PubMed PMC

Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366: 1561–1577. PubMed

Ashford RW (2000) The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30: 1269–1281. PubMed

Romero GAS, Boelaert M (2010) Control of visceral leishmaniasis in Latin America-A systematic review. PLoS Negl Trop Dis 4: e584. PubMed PMC

Costa CHN, Gomes RBB, Silva MRB, Garcez LM, Ramos PKS, et al. (2000) Competence of the human host as a reservoir for Leishmania chagasi . J Infect Dis 182: 997–1000. PubMed

Costa CHN, Stewart JM, Gomes RBB, Garcez LN, Ramos PKS, et al. (2002) Asymptomatic human carriers of Leishmania chagasi . Am J Trop Med Hyg 66: 334–337. PubMed

Michel G, Pomares C, Ferrua B, Marty P (2011) Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Tropica 119: 69–75. PubMed

Laurenti MD, Rossi CN, da Matta VL, Tomokane TY, Corbett CE, et al. (2013) Asymptomatic dogs are highly competent to transmit Leishmania (Leishmania) infantum chagasi to the natural vector. Vet Parasitol 196: 296–300. PubMed

Dostalova A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5: 276. PubMed PMC

Freitas VC, Parreiras KP, Duarte APM, Secundino NFC, Pimenta PFP (2012) Development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis . Am J Trop Med Hyg 86: 606–612. PubMed PMC

Pimenta PFP, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, et al. (1992) Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 256: 1812–1815. PubMed

Volf P, Kiewegova A, Nemec A (2002) Bacterial colonization in the gut of Phlebotomus duboseqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitol (Praha) 49: 73–77. PubMed

Schlein Y (1993) Leishmania and sandflies: interactions in the life cycle and transmission. Parasitol Today 9: 255–258. PubMed

Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC (1996) Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54: 214–218. PubMed

Lourenco-de-Oliveira R, Rua AV, Vezzani D, Willat G, Vazeille M, et al. (2013) Aedes aegypti from temperate regions of south America are highly competent to transmit dengue virus. BMC Infect Dis 13: 610. PubMed PMC

Rebollar-Tellez EA, Hamilton JGC, Ward RD (1999) Response of female Lutzomyia longipalpis to host odour kairomones from human skin. Physiol Entomol 24: 220–226.

Kelly DW (2001) Why are some people bitten more than others? Trends Parasitol 17: 578–581. PubMed

O'Shea B, Rebollar-Tellez E, Ward RD, Hamilton JGC, El Naiem D, et al. (2002) Enhanced sandfly attraction to Leishmania-infected hosts. T Roy Soc Trop Med H 96: 117–118. PubMed

Lacroix R, Mukabana WR, Gouagna LC, Koella JC (2005) Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 3: 1590–1593. PubMed PMC

Pesko K, Westbrook CJ, Mores CN, Lounibos LP, Reiskind MH (2009) Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya virus. J Med Entomol 46: 395–399. PubMed PMC

Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, et al. (2009) Host selection by Culex pipiens mosquitoes and West Nile Virus amplification. Am J Trop Med Hyg 80: 268–278. PubMed

Lyimo IN, Ferguson HM (2009) Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 25: 189–196. PubMed

Muriu SM, Muturi EJ, Shililu JI, Mbogo CM, Mwangangi JM, et al. (2008) Host choice and multiple blood feeding behavior of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malar J 7. PubMed PMC

Lacroix R, Mukabana WR, Gouagna LC, Koella JC (2005) Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 3: e298. PubMed PMC

Mann RS, Ali JG, Hermann SL, Tiwari S, Pelz-Stelinski KS, et al. (2012) Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8: e1002610. PubMed PMC

Scott TW, Lorenz LH, Edman JD (1990) Effects of house sparrow age and arbovirus infection on attraction of mosquitoes. J Med Entomol 27: 856–863. PubMed

Smith DL, McKenzie FE, Snow RW, Hay SI (2007) Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5: 531–542. PubMed PMC

Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, et al. (2009) Epidemic dynamics at the human-animal interface. Science 326: 1362–1367. PubMed PMC

Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multihost pathogens. Science 292: 1109–1112. PubMed

Miller E, Huppert A (2013) The effects of host diversity on vector-borne disease: the conditions under which diversity will amplify or dilute the disease risk. PLoS One 8: e80279. PubMed PMC

Espinosa D, Boggild AK, Deborggraeve S, Laurent T, Valencia C, et al. (2009) Leishmania OligoC-TesT as a simple, rapid, and standardized tool for molecular diagnosis of cutaneous leishmaniasis in Peru. J Clin Microbiol 47: 2560–2563. PubMed PMC

Foral TM, French RA, Van Kruiningen HJ, Garmendia AE (2007) Fluorescent antibody test for rapid detection of West Nile Virus antigen in avian tissues. Avian Dis 51: 601–605. PubMed

Morris U, Aydin-Schmidt B, Shakely D, Martensson A, Jornhagen L, et al. (2013) Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria - assessment of DNA extraction methods and field applicability. Malar J 12: 106. PubMed PMC

Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438: 492–495. PubMed PMC

Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, et al. (2008) Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci USA 105: 10125–10130. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...