Agriculture's impact on water-energy balance varies across climates
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RGPIN-2019-06894
Canadian Government | Natural Sciences and Engineering Research Council of Canada (NSERC)
PubMed
40096605
PubMed Central
PMC11962491
DOI
10.1073/pnas.2410521122
Knihovny.cz E-zdroje
- Klíčová slova
- Budyko water balance, agriculture, irrigation, water balance,
- Publikační typ
- časopisecké články MeSH
Agriculture is a cornerstone of global food production, accounting for a substantial portion of water withdrawals worldwide. As the world's population grows, so does the demand for water in agriculture, leading to alterations in regional water-energy balances. We present an approach to identify the influence of agriculture on the water-energy balance using empirical data. We explore the departure from the Budyko curve for catchments with agricultural expansion and their associations with changes in the water-energy balance using a causal discovery algorithm. Analyzing data from 1,342 catchments across three Köppen-Geiger climate classes-temperate, snowy, and others-from 1980 to 2014, we show that temperate and snowy catchments, which account for over 90% of stations, exhibit distinct patterns. Cropland percentage (CL%) emerges as the dominant factor, explaining 47 and 37% of the variance in deviations from the Budyko curve in temperate and snowy catchments, respectively. In temperate catchments, CL% shows a strong negative correlation with precipitation-streamflow (P-Q) causal strength (Spearman [Formula: see text]), suggesting that cropland exacerbates precipitation-driven deviations. A moderate negative correlation with aridity-streamflow (AR-Q) causal strength ([Formula: see text]) indicates additional influences of cropland through aridity-driven interactions. In snowy catchments, CL% is similarly influential, with a positive correlation with P-Q causal strength ([Formula: see text]). However, the negative correlation with AR-Q causal strength ([Formula: see text]) underscores the role of aridity as a secondary driver. While vegetation and precipitation seasonality also contribute to the deviations, their impacts are comparatively lower. These findings underscore the need for inclusion of agricultural activities in changing water-energy balance to secure future water supplies.
Zobrazit více v PubMed
Zhang J., et al. , Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nat. Commun. 12, 5549 (2021). PubMed PMC
Mrad A., et al. , Peak grain forecasts for the US high plains amid withering waters. Proc. Natl. Acad. Sci. U.S.A. 117, 26145–26150 (2020). PubMed PMC
Wisser D., et al. , Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 35, 4–87 (2008).
Cai X., Rosegrant M. W., Global water demand and supply projections. Water Int. 27, 159–169 (2002).
Döll P., et al. , Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156 (2012).
Döll P., et al. , Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).
Hoogeveen J., Faurès J.-M., Peiser L., Burke J., van de Giesen N., GlobWat – a global water balance model to assess water use in irrigated agriculture. Hydrol. Earth Syst. Sci. 19, 3829–3844 (2015).
Wada Y., Wisser D., Bierkens M. F. P., Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).
Hoff H., et al. , Greening the global water system. J. Hydrol. 384, 177–186 (2010).
Edgerton M. D., Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149, 7–13 (2009). PubMed PMC
Maghrebi M., et al. , Iran’s agriculture in the Anthropocene. Earth’s Future 8, e2020EF001547 (2020).
I. A. Shiklomanov, Assessment of water resources and water availability in the world. Comprehensive assessment of the freshwater resources of the world (World Meteorological Organisation, Geneva, 1997). https://digitallibrary.un.org/record/261669?ln=en&v=pdf. Accessed 1 March 2024.
Döll P., Siebert S., Global modeling of irrigation water requirements. Water Resour. Res. 38, 8-1–8-10 (2002).
Grafton R. Q., et al. , The paradox of irrigation efficiency. Science 361, 748–750 (2018). PubMed
Griggs D., et al. , An integrated framework for sustainable development goals. Ecol. Soc. 19, 4 (2014).
McGuire V., Water-Level and Recoverable Water in Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15 (USGS Staff – Published Research, 2017).
Steward D. R., et al. , Tapping unsustainable groundwater stores for agricultural production in the high plains Aquifer of Kansas, projections to 2110. Proc. Natl. Acad. Sci. U.S.A. 110, E3477–E3486 (2013). PubMed PMC
Haacker E. M. K., Kendall A. D., Hyndman D. W., Water level declines in the high plains aquifer: Predevelopment to resource senescence. Groundwater 54, 231–242 (2016). PubMed
Vörösmarty C. J., Lévêque C., Revenga C., Fresh water, in ecosystems and human well-being: Current states and trends, millenium ecosystem assessment. Report. (2005), https://scholar.google.com/scholar_lookup?hl=en&publication_year=2005&pages=165-207&author=C.+J.+V%C3%B6r%C3%B6smarty&author=C.+L%C3%A9v%C3%AAque&author=C.+Revenga&title=Ecosystems+and+Human+Well%E2%80%90Being%3A+Current+States+and+Trends.
Wada Y., van Beek L. P. H., Bierkens M. F. P., Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res. 48, 2055 (2012).
Margat J., Foster S., Droubi A., Concept and importance of non-renewable resources. Non-Renew. Groundwater Resour. 10, 13–24 (2006).
Gleeson T., et al. , Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012). PubMed
Bierkens M. F. P., Wada Y., Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 14, 063002 (2019).
Rost S., et al. , Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).
Liu X., et al. , Multimodel uncertainty changes in simulated river flows induced by human impact parameterizations. Environ. Res. Lett. 12, 025009 (2017). PubMed PMC
Liu J., Yang H., Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. J. Hydrol. 384, 187–197 (2010).
Schewe J., et al. , Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3245–3250 (2014). PubMed PMC
Liu X., et al. , Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future 10, e2021EF002567 (2022).
Veettil A. V., Mishra A. K., Water security assessment using blue and green water footprint concepts. J. Hydrol. 542, 589–602 (2016).
Nóbrega R. L. B., et al. , Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLOS ONE 12, e0179414 (2017). PubMed PMC
Richey A. S., et al. , Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015). PubMed PMC
Kundzewicz Z. W., Döll P., Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54, 665–675 (2009).
Scanlon B. R., et al. , Groundwater depletion and sustainability of irrigation in the US high plains and Central Valley. Proc. Natl. Acad. Sci. U.S.A. 109, 9320–9325 (2012). PubMed PMC
Perkin J. S., et al. , Groundwater declines are linked to changes in great plains stream fish assemblages. Proc. Natl. Acad. Sci. U.S.A. 114, 7373–7378 (2017). PubMed PMC
Gleeson T., et al. , Groundwater sustainability strategies. Nat. Geosci. 3, 378–379 (2010).
Famiglietti J. S., et al. , Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
GebreEgziabher M., Jasechko S., Perrone D., Widespread and increased drilling of wells into fossil aquifers in the USA. Nat. Commun. 13, 2129 (2022). PubMed PMC
Rodell M., Velicogna I., Famiglietti J. S., Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009). PubMed
Uchôa J. G. S. M., et al. , Widespread potential for streamflow leakage across Brazil. Nat. Commun. 15, 10211 (2024). PubMed PMC
McColl K. A., et al. , The terrestrial water cycle in a warming world. Nat. Clim. Chang. 12, 604–606 (2022).
Allan R. P., et al. , Advances in understanding large-scale responses of the water cycle to climate change. Ann. N.Y. Acad. Sci. 1472, 49–75 (2020). PubMed
Taylor R. G., et al. , Ground water and climate change. Nat. Clim. Chang. 3, 322–329 (2013).
Condon L. E., Atchley A. L., Maxwell R. M., Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020). PubMed PMC
Wada Y., et al. , Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).
Wang D., Hejazi M., Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 47, W00J12 (2011).
Kåresdotter E., et al. , Distinguishing direct human-driven effects on the global terrestrial water cycle. Earth’s. Future 10, e2022EF002848 (2022). PubMed PMC
Berghuijs W. R., et al. , The relative importance of different flood-generating mechanisms across Europe. Water Resour. Res. 55, 4582–4593 (2019).
Blöschl G., et al. , Changing climate shifts timing of European floods. Science 357, 588–590 (2017). PubMed
Pekel J.-F., Cottam A., Gorelick N., Belward A. S., High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016). PubMed
de Graaf I. E. M., Gleeson T., van Beek L. P. H., Sutanudjaja E. H., Bierkens M. F. P., Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019). PubMed
Miller M. P., Buto S. G., Susong D. D., Rumsey C. A., The importance of base flow in sustaining surface water flow in the upper colorado river Basin. Water Resour. Res. 52, 3547–3562 (2016).
Stoelzle M., Stahl K., Morhard A., Weiler M., Streamflow sensitivity to drought scenarios in catchments with different geology. Geophys. Res. Lett. 41, 6174–6183 (2014).
Longuevergne L., Scanlon B. R., Wilson C. R., GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 46, 11517 (2010).
Nie W., et al. , Groundwater withdrawals under drought: Reconciling GRACE and land surface models in the United States high plains Aquifer. Water Resour. Res. 54, 5282–5299 (2018).
Puy A., et al. , The delusive accuracy of global irrigation water withdrawal estimates. Nat. Commun. 13, 3183 (2022). PubMed PMC
Budyko M. I., Climate and Life (Academic, 1974), vol. 508.
Runge J., et al. , Inferring causation from time series in earth system sciences. Nat. Commun. 10, 2553 (2019). PubMed PMC
Runge J., Nowack P., Kretschmer M., Flaxman S., Sejdinovic D., Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). PubMed PMC
Zhang L., Dawes W. R., Walker G. R., Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).
Liu J., You Y., The roles of catchment characteristics in precipitation partitioning within the Budyko framework. J. Geophys. Res. Atmos. 126, e2021JD035168 (2021).
Donohue R. J., Roderick M. L., McVicar T. R., Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 436–437, 35–50 (2012).
Fu J., Wang W., On the lower bound of Budyko curve: The influence of precipitation seasonality. J. Hydrol. 570, 292–303 (2019).
Li D., Pan M., Cong Z., Zhang L., Wood E., Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 49, 969–976 (2013).
Nasta P., Allocca C., Deidda R., Romano N., Assessing the impact of seasonal-rainfall anomalies on catchment-scale water balance components. Hydrol. Earth Syst. Sci. 24, 3211–3227 (2020).
Perdigão R. A. P., Blöschl G., Spatiotemporal flood sensitivity to annual precipitation: Evidence for landscape-climate coevolution. Water Resour. Res. 50, 5492–5509 (2014).
Berghuijs W. R., Woods R. A., Hrachowitz M., A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 4, 583–586 (2014).
Berghuijs W. R., Larsen J. R., van Emmerik T. H. M., Woods R. A., A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res. 53, 8475–8486 (2017).
Berghuijs W. R., Gnann S. J., Woods R. A., Unanswered questions on the Budyko framework. Hydrol. Process. 34, 5699–5703 (2020).
Berghuijs W. R., Woods R. A., Correspondence: Space-time asymmetry undermines water yield assessment. Nat. Commun. 7, 11603 (2016). PubMed PMC
Knoben W. J. M., Woods R. A., Freer J. E., A quantitative hydrological climate classification evaluated with independent streamflow data. Water Resour. Res. 54, 5088–5109 (2018).
Stein L., Clark M. P., Knoben W. J. M., Pianosi F., Woods R. A., How do climate and catchment attributes influence flood generating processes? A large-sample study for 671 catchments across the contiguous USA Water Resour. Res. 57, e2020WR028300 (2021).
Galytska E., et al. , Evaluating causal Arctic-Midlatitude teleconnections in CMIP6. J. Geophys. Res. Atmos. 128, e2022JD037978 (2023).
Ombadi M., Nguyen P., Sorooshian S., Hsu K., Evaluation of methods for causal discovery in hydrometeorological systems. Water Resour. Res. 56, e2020WR027251 (2020).
Runge J., Quantifying information transfer and mediation along causal pathways in complex systems. Phys. Rev. E 92, 062829 (2015). PubMed
Runge J., et al. , Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 6, 8502 (2015). PubMed PMC
Gentine P., D’Odorico P., Lintner B. R., Sivandran G., Salvucci G., Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys. Res. Lett. 39, 19404 (2012).
Freeze R. A., Role of subsurface flow in generating surface runoff: 1. Base flow contributions to channel flow. Water Resour. Res. 8, 609–623 (1972).
Eckhardt K., How to construct recursive digital filters for baseflow separation. Hydrol. Process. 19, 507–515 (2005).
Lyne V., Hollick M., Stochastic time variable rainfall-runoff modelling (1979), pp. 89–93. https://scholar.google.com/scholar_lookup?hl=en&publication_year=1979&pages=82-92&author=V.+D.+Lyne&author=M.+Hollick&title=Hydrology+and+water+resources+symposium.
Gnann S. J., Woods R. A., Howden N. J. K., Is there a baseflow Budyko curve? Water Resour. Res. 55, 2838–2855 (2019).
Meira Neto A. A., Roy T., de Oliveira P. T. S., Troch P. A., An aridity index-based formulation of streamflow components. Water Resour. Res. 56, e2020WR027123 (2020).
Sivapalan M., Yaeger M. A., Harman C. J., Xu X., Troch P. A., Functional model of water balance variability at the catchment scale: 1. Evidence of hydrologic similarity and space-time symmetry. Water Resour. Res. 47, W02522 (2011).
Trancoso R., Larsen J. R., McVicar T. R., Phinn S. R., McAlpine C. A., CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys. Res. Lett. 44, 2310–2318 (2017).
Ballarin A. S., et al. , The impact of an open water balance assumption on understanding the factors controlling the long-term streamflow components. Water Resour. Res. 58, e2022WR032413 (2022).
McFadden I. R., et al. , Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol. Lett. 26, 203–218 (2023). PubMed PMC
McDonald R. I., et al. , Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. U.S.A. 108, 6312–6317 (2011). PubMed PMC
Villarini G., Wasko C., Humans, climate and streamflow. Nat. Clim. Chang. 11, 725–726 (2021).
Gudmundsson L., et al. , Globally observed trends in mean and extreme river flow attributed to climate change. Science 371, 1159–1162 (2021). PubMed
Zhang Y., et al. , Future global streamflow declines are probably more severe than previously estimated. Nat. Water 1, 261–271 (2023), 10.1038/s44221-023-00030-7. DOI
Kuang X., et al. , The changing nature of groundwater in the global water cycle. Science 383, eadf0630 (2024). PubMed
Suttles K. M., et al. , Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed in the Southeast U.S. Sci. Total Environ. 645, 806–816 (2018). PubMed
Singh N. K., Basu N. B., The human factor in seasonal streamflows across natural and managed watersheds of North America. Nat. Sustain. 5, 397–405 (2022).
Jasechko S., Seybold H., Perrone D., Fan Y., Kirchner J. W., Widespread potential loss of streamflow into underlying aquifers across the USA. Nature 591, 391–395 (2021). PubMed
Condon L. E., Maxwell R. M., Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019). PubMed PMC
Condon L. E., Maxwell R. M., Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: A spatio-temporal framework for understanding water management impacts. Environ. Res. Lett. 9, 034009 (2014).
Andréassian V., Waters and forests: From historical controversy to scientific debate. J. Hydrol. 291, 1–27 (2004).
Chagas V. B. P., Chaffe P. L. B., Blöschl G., Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022). PubMed PMC
Moore D. R., Wondzell S. M., Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review. J. Am. Water Resour. Assoc. 41, 763–784 (2005).
Booij M. J., Schipper T. C., Marhaento H., Attributing changes in streamflow to land use and climate change for 472 catchments in Australia and the United States. Water 11, 1059 (2019).
Zeng R., Yao C., Cai X., Haacker E., Temporal and spatial pattern change in evapotranspiration over the High Plains: The impact of and guide on extensive groundwater-fed irrigation. Water Resour. Res. 59, e2023WR035004 (2023).
Grogan D. S., Wisser D., Prusevich A., Lammers R. B., Frolking S., The use and re-use of unsustainable groundwater for irrigation: A global budget. Environ. Res. Lett. 12, 034017 (2017).
Jasechko S., et al. , Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024). PubMed PMC
Liu Z., Chen H., Huo Z., Wang F., Shock C. C., Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table. Agric. Water Manag. 171, 131–141 (2016).
Ketchum D., Hoylman Z. H., Huntington J., Brinkerhoff D., Jencso K. G., Irrigation intensification impacts sustainability of streamflow in the Western United States. Commun. Earth Environ. 4, 1–8 (2023). PubMed
Bouaziz L., et al. , Redressing the balance: Quantifying net intercatchment groundwater flows. Hydrol. Earth Syst. Sci. 22, 6415–6434 (2018).
Chen H., Huo Z., Zhang L., White I., New perspective about application of extended Budyko formula in arid irrigation district with shallow groundwater. J. Hydrol. 582, 124496 (2020).
Cheng L., Xu Z., Wang D., Cai X., Assessing interannual variability of evapotranspiration at the catchment scale using satellite-based evapotranspiration data sets. Water Resour. Res. 47, W09509 (2011).
Wang X., Huo Z., Feng S., Guo P., Guan H., Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics. J. Hydrol. 543, 501–509 (2016).
Wang X., et al. , Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agric. Water Manage. 228, 105922 (2020).
Schreiner-McGraw A. P., et al. , Surface resistance controls differences in evapotranspiration between croplands and prairies in U.S. Corn Belt sites. Water Resour. Res. 60, e2023WR035819 (2024).
Weatherhead E. K., Howden N. J. K., The relationship between land use and surface water resources in the UK. Land Use Policy 26, S243–S250 (2009).
Stephens W., Hess T. M., Knox J. W., Review of the effects of energy crops on hydrology (2001). https://dspace.lib.cranfield.ac.uk/handle/1826/3368. Accessed 1 March 2024.
Rameshwaran P., et al. , Use of abstraction and discharge data to improve the performance of a national-scale hydrological model. Water Resour. Res. 58, e2021WR029787 (2022).
Huxman T. E., et al. , Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004). PubMed
Vicente-Serrano S. M., et al. , Climate, irrigation, and land cover change explain streamflow trends in countries bordering the Northeast Atlantic. Geophys. Res. Lett. 46, 10821–10833 (2019).
Perrone D., Jasechko S., Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2, 773–782 (2019).
Harrigan S., et al. , Attribution of detected changes in streamflow using multiple working hypotheses. Hydrol. Earth Syst. Sci. 18, 1935–1952 (2014).
Zheng Y., et al. , Controls on the spatial and temporal patterns of rainfall-runoff event characteristics—A large sample of catchments across Great Britain. Water Resour. Res. 59, e2022WR033226 (2023).
Lee L. J. E., Lawrence D. S. L., Price M., Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer SE England. J. Hydrol. 330, 604–620 (2006).
Hughes A. G., et al. , Flood risk from groundwater: Examples from a Chalk catchment in southern England. J. Flood Risk Manage. 4, 143–155 (2011).
King K. W., Fausey N. R., Williams M. R., Effect of subsurface drainage on streamflow in an agricultural headwater watershed. J. Hydrol. 519, 438–445 (2014).
Robinson M., Rycroft D. W., “The impact of drainage on streamflow” in Agricultural Drainage (John Wiley & Sons Ltd, 1999). pp. 767–800, 10.2134/agronmonogr38.c23. DOI
Skaggs R. W., Brevé M. A., Gilliam J. W., Hydrologic and water quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Technol. 24, 1–32 (1994).
Addor N., et al. , The CAMELS data set: Catchment attributes and meteorology for large-sample studies. Hydrol. Earth Syst. Sci. 21, 5293–5313 (2017).
Lins H. F., USGS Hydro-climatic data network 2009 (HCDN-2009). https://pubs.usgs.gov/fs/2012/3047/ (2009). Accessed 1 March 2024.
Ramankutty N., et al. , Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, 1003 (2008).
Coxon G., et al. , CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth Syst. Sci. Data 12, 2459–2483 (2020).
Hock R., Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).
Fan H., He D., Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang–Mekong and Nu–Salween Rivers. J. Hydrometeorol. 16, 2248–2263 (2015).
Vittinghoff E., et al. , Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. (Springer, US, Boston, MA, 2012).
Wu Y., Li N., Nonlinear control of climate, hydrology, and topography on streamflow response through the use of interpretable machine learning across the contiguous United States. J. Water Clim. Change 14, 4084–4098 (2023).
Schoppa L., Disse M., Bachmair S., Evaluating the performance of random forest for large-scale flood discharge simulation. J. Hydrol. 590, 125531 (2020).
Rodriguez-Galiano V. F., et al. , Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 121, 93–107 (2012).
Zhou G., et al. , Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6, 5918 (2015). PubMed
Merz B., et al. , HESS Opinions ‘More efforts and scientific rigour are needed to attribute trends in flood time series’. Hydrol. Earth Syst. Sci. 16, 1379–1387 (2012).
Zaerpour M., et al. , Climate shapes baseflows, influencing drought severity. Environ. Res. Lett. 20, 014035 (2024).
Delforge D., et al. , Detecting hydrological connectivity using causal inference from time series: Synthetic and real karstic case studies. Hydrol. Earth Syst. Sci. 26, 2181–2199 (2022).
Runge J.”Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets” in Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI) (PMLR, 2020), pp. 1388–1397.
Spirtes P., et al. , Causation, Prediction, and Search (MIT Press, 2000).
Lee S., Ajami H., Comprehensive assessment of baseflow responses to long-term meteorological droughts across the United States. J. Hydrol. 626, 130256 (2023).
Gnann S. J., et al. , Including regional knowledge improves baseflow signature predictions in large sample hydrology. Water Resour. Res. 57, e2020WR028354 (2021).
Ladson A. R., et al. , A standard approach to baseflow separation using the Lyne and Hollick filter. Aust. J. Water Resour. 17, 25–34 (2013).
Berghuijs W. R., Slater L. J., Groundwater shapes North American river floods. Environ. Res. Lett. 18, 034043 (2023).
Zhang J., et al. , Evaluating relative merits of four baseflow separation methods in Eastern Australia. J. Hydrol. 549, 252–263 (2017).