Identifying causal gateways and mediators in complex spatio-temporal systems
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26443010
PubMed Central
PMC4633716
DOI
10.1038/ncomms9502
PII: ncomms9502
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events.
Department of Atmospheric Physics Charles University 5 Holešovičkách 2 Prague 8 18000 Czech Republic
Department of Physics Humboldt University Newtonstrasse 15 Berlin 12489 Germany
Institute for Complex Systems and Mathematical Biology University of Aberdeen Aberdeen AB24 3UE UK
Potsdam Institute for Climate Impact Research PO Box 60 12 03 Potsdam 14412 Germany
Stockholm Resilience Centre Stockholm University Kräftriket 2B Stockholm 11419 Sweden
See more in PubMed
Rahmstorf S. & Coumou D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011) . PubMed PMC
Ghil M. et al.. Extreme events: dynamics, statistics and prediction. Nonlin. Process. Geophys. 18, 295–350 (2011) .
Orgis T. et al.. Influence of interactive stratospheric chemistry on large-scale air mass exchange in a global circulation model. Eur. Phys. J. Spec. Top. 174, 257–269 (2009) .
Vaughan N. E. & Lenton T. M. A Review of Geoengineering Proposals. Climatic Change 109, 745–790 (2011) .
Bassett G. W. & Lin Z. Breaking global temperature records after Mt. Pinatubo. Climatic Change 25, 179–184 (1993) .
Trenberth K. E., Fasullo J. T., Branstator G. & Phillips A. S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change 4, 911–916 (2014) .
Zubler F. et al.. Detecting functional hubs of ictogenic networks. Brain Topogr. 28, 305–317 (2014) . PubMed
Albert R., Albert I. & Nakarado G. L. Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004) . PubMed
Menck P. J., Heitzig J., Kurths J. & Schellnhuber H. J. How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014) . PubMed
Newman M. E. J. Spread of epidemic diseases on networks. Phys. Rev. E 66, 016128 (2002) . PubMed
Klemm K., Serrano M. A., Egulluz V. M. & Miguel M. S. A measure of individual role in collective dynamics. Sci. Rep. 2, 292 (2012) . PubMed PMC
Lenzu S. & Tedeschi G. Systemic risk on different interbank network topologies. Physica A 391, 4331–4341 (2012) .
Haldane A. G. & May R. M. Systemic risk in banking ecosystems. Nature 469, 351–355 (2011) . PubMed
Brovkin V. et al.. Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change 92, 243–259 (2009) .
Stocker T. & Qin D. Climate Change 2013: The Physical Science Basis Cambridge University Press (2013) .
Newman M. E. J. Networks: An Introduction Oxford University Press (2010) .
Friston K. J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994) .
Bullmore E. & Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009) . PubMed
Schinkel S., Zamora-Lopez G., Dimingen O., Sommer W. & Kurths J. Functional network analysis reveals differences in the semantic priming task. J. Neurosci. Methods 197, 333–339 (2011) . PubMed
Simpson S. L., Bowman F. D. & Laurienti P. J. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surv. 7, 1–36 (2013) . PubMed PMC
Tsonis A. A., Swanson K. L. & Wang G. On the role of atmospheric teleconnections in climate. J. Climate 21, 2990–3001 (2008) .
Yamasaki K., Gozolchiani A. & Havlin S. Climate networks around the globe are significantly affected by El Nino. Phys. Rev. Lett. 100, 228501 (2008) . PubMed
Donges J. F., Zou Y., Marwan N. & Kurths J. The backbone of the climate network. Europhys. Lett. 87, 48007 (2009) .
Ebert-Uphoff I. & Deng Y. Causal discovery for climate research using graphical models. J. Climate 25, 5648–5665 (2012) .
Deng Y. & Ebert-Uphoff I. Weakening of atmospheric information flow in a warming climate in the Community Climate System Model. Geophys. Res. Lett. 41, 193–200 (2014) .
Boers N., Bookhagen B., Barbosa H., Marwan N. & Kurths J. Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat. Commun. 5, 5199 (2014) . PubMed
Freeman L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977) .
Kaiser H. F. The varimax criterion for analytical rotation in factor analysis. Psychometrika 23, 187–200 (1958) .
Vejmelka M. et al.. Non-random correlation structures and dimensionality reduction in multivariate climate data. Climate Dyn. 44, 2663–2682 (2015) .
Spirtes P., Glymour C. & Scheines R. Causation, Prediction, and Search The MIT Press (2000) .
Runge J., Heitzig J., Petoukhov V. & Kurths J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 108, 258701 (2012) . PubMed
Runge J., Petoukhov V. & Kurths J. Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. J. Climate 27, 720–739 (2014) .
Pearl J. Causality: Models, Reasoning, and Inference Cambridge University Press (2000) .
Pearl J. Linear models: a useful ‘microscope' for causal analysis. J. Causal Inference 1, 155–170 (2013) .
Eichler M. & Didelez V. On Granger-causality and the effect of interventions in time series. Lifetime Data Anal. 16, 3–32 (2010) . PubMed
Freeman L. C. Centrality in social networks conceptual clarification. Soc. Networks 1, 215–239 (1978) .
Philander S. G. H. El-Niño and the Southern Oscillation Academic press (1990) . PubMed
Cane M. A. The evolution of El Niño, past and future. Earth Planet. Sci. Lett. 230, 227–240 (2005) .
Wallace J. M. & Gutzler D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 109, 784–812 (1981) .
Ghil M. & Mo K. Intraseasonal Oscillations in the Global Atmosphere. Part I: Northern Hemisphere and Tropics. J. Atmos. Sci 48, 752–779 (1991) .
Kalnay E. et al.. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996) .
Runge J. Quantifying information transfer and mediation along causal pathways in complex systems, Preprint at http://arxiv.org/abs/1508.03808 [stat.ME] (2015) . PubMed
Webster P. J. et al.. Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans 103, 14451–14510 (1998) .
Hastie T., Tibshirani R. & Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn Springer (2009) .
Vautard R. & Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989) .
Hlinka J. et al.. Reliability of inference of directed climate networks using conditional mutual information. Entropy 15, 2023–2045 (2013) .
Spirtes P. & Glymour C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991) .
Eichler M. Graphical modelling of multivariate time series. Probab. Theory Relat. Fields 153, 233–268 (2012) .
Lauritzen S. L. Graphical Models Oxford University Press (1996) .
Storch H. V. & Zwiers F. W. Statistical Analysis in Climate Research Cambridge University Press (1999) .
Wright S. The method of path coefficients. Ann. Math. Stat. 5, 161–215 (1934) .
Kumar K. K., Rajagopalan B. & Cane M. A. On the weakening relationship between the Indian Monsoon and ENSO. Science 284, 2156–2159 (1999) . PubMed
Hosking J. S., Russo M. R., Braesicke P. & Pyle J. A. Tropical convective transport and the Walker circulation. Atmos. Chem. Phys. 12, 9791–9797 (2012) .
Petoukhov V., Rahmstorf S., Petri S. & Schellnhuber H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013) . PubMed PMC
Lau W. & Kim K. The 2010 Pakistan flood and Russian heat wave: teleconnection of hydromete-orological extremes. J. Hydrometeor. 13, 392–403 (2012) .
Ghil M. & Robertson A. W. ‘Waves' versus ‘particles' in the atmosphere's phase space: a pathway to long-range forecasting? Proc. Natl Acad. Sci. USA 99, 2493–2500 (2002) . PubMed PMC
Lau K. & Yang S. in Encyclopedia of Atmospheric Sciences ed. Holton J. R. 2505–2510Academic Press (2003) .
Paluš M. Multiscale atmospheric dynamics: cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 112, 078702 (2014) . PubMed
Moron V., Robertson A. W., Qian J.-H. & Ghil M. Weather types across the Maritime Continent: from the diurnal cycle to interannual variations. Front. Environ. Sci. 2, 65 (2015) .
Coluzzi B., Ghil M., Hallegatte S. & Weisbuch G. Boolean delay equations on networks in economics and the geosciences. Int. J. Bifurcat. Chaos 21, 3511–3548 (2011) .
Runge J., Heitzig J., Marwan N. & Kurths J. Quantifying causal coupling strength: a lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E 86, 061121 (2012) . PubMed
Pall P. et al.. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011) . PubMed
Hannart A., Pearl J., Otto F., Naveau P. & Ghil M. Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteor. Soc. Early online release at http://dx.doi.org/10.1175/BAMS-D-14-00034.1 (2015) . DOI
Runge J., Donner R. & Kurths J. Optimal model-free prediction from multivariate time series. Phys. Rev. E 91, 052909 (2015) . PubMed
VanderWeele T. Explanation in causal inference: methods for mediation and interaction Oxford University Press (2015) .
Hardle W., Horowitz J. & Kreiss J.-P. Bootstrap methods for time series. Int. Stat. Rev. 71, 435–459 (2003) .
Agriculture's impact on water-energy balance varies across climates
Impacts of agriculture and snow dynamics on catchment water balance in the U.S. and Great Britain
Causes of extreme events revealed by Rényi information transfer
Causality in Reversed Time Series: Reversed or Conserved?
Causality and Information Transfer Between the Solar Wind and the Magnetosphere-Ionosphere System
Network Inference and Maximum Entropy Estimation on Information Diagrams