• This record comes from PubMed

Identifying causal gateways and mediators in complex spatio-temporal systems

. 2015 Oct 07 ; 6 () : 8502. [epub] 20151007

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events.

See more in PubMed

Rahmstorf S. & Coumou D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011) . PubMed PMC

Ghil M. et al.. Extreme events: dynamics, statistics and prediction. Nonlin. Process. Geophys. 18, 295–350 (2011) .

Orgis T. et al.. Influence of interactive stratospheric chemistry on large-scale air mass exchange in a global circulation model. Eur. Phys. J. Spec. Top. 174, 257–269 (2009) .

Vaughan N. E. & Lenton T. M. A Review of Geoengineering Proposals. Climatic Change 109, 745–790 (2011) .

Bassett G. W. & Lin Z. Breaking global temperature records after Mt. Pinatubo. Climatic Change 25, 179–184 (1993) .

Trenberth K. E., Fasullo J. T., Branstator G. & Phillips A. S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change 4, 911–916 (2014) .

Zubler F. et al.. Detecting functional hubs of ictogenic networks. Brain Topogr. 28, 305–317 (2014) . PubMed

Albert R., Albert I. & Nakarado G. L. Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004) . PubMed

Menck P. J., Heitzig J., Kurths J. & Schellnhuber H. J. How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014) . PubMed

Newman M. E. J. Spread of epidemic diseases on networks. Phys. Rev. E 66, 016128 (2002) . PubMed

Klemm K., Serrano M. A., Egulluz V. M. & Miguel M. S. A measure of individual role in collective dynamics. Sci. Rep. 2, 292 (2012) . PubMed PMC

Lenzu S. & Tedeschi G. Systemic risk on different interbank network topologies. Physica A 391, 4331–4341 (2012) .

Haldane A. G. & May R. M. Systemic risk in banking ecosystems. Nature 469, 351–355 (2011) . PubMed

Brovkin V. et al.. Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change 92, 243–259 (2009) .

Stocker T. & Qin D. Climate Change 2013: The Physical Science Basis Cambridge University Press (2013) .

Newman M. E. J. Networks: An Introduction Oxford University Press (2010) .

Friston K. J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994) .

Bullmore E. & Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009) . PubMed

Schinkel S., Zamora-Lopez G., Dimingen O., Sommer W. & Kurths J. Functional network analysis reveals differences in the semantic priming task. J. Neurosci. Methods 197, 333–339 (2011) . PubMed

Simpson S. L., Bowman F. D. & Laurienti P. J. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surv. 7, 1–36 (2013) . PubMed PMC

Tsonis A. A., Swanson K. L. & Wang G. On the role of atmospheric teleconnections in climate. J. Climate 21, 2990–3001 (2008) .

Yamasaki K., Gozolchiani A. & Havlin S. Climate networks around the globe are significantly affected by El Nino. Phys. Rev. Lett. 100, 228501 (2008) . PubMed

Donges J. F., Zou Y., Marwan N. & Kurths J. The backbone of the climate network. Europhys. Lett. 87, 48007 (2009) .

Ebert-Uphoff I. & Deng Y. Causal discovery for climate research using graphical models. J. Climate 25, 5648–5665 (2012) .

Deng Y. & Ebert-Uphoff I. Weakening of atmospheric information flow in a warming climate in the Community Climate System Model. Geophys. Res. Lett. 41, 193–200 (2014) .

Boers N., Bookhagen B., Barbosa H., Marwan N. & Kurths J. Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat. Commun. 5, 5199 (2014) . PubMed

Freeman L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977) .

Kaiser H. F. The varimax criterion for analytical rotation in factor analysis. Psychometrika 23, 187–200 (1958) .

Vejmelka M. et al.. Non-random correlation structures and dimensionality reduction in multivariate climate data. Climate Dyn. 44, 2663–2682 (2015) .

Spirtes P., Glymour C. & Scheines R. Causation, Prediction, and Search The MIT Press (2000) .

Runge J., Heitzig J., Petoukhov V. & Kurths J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 108, 258701 (2012) . PubMed

Runge J., Petoukhov V. & Kurths J. Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. J. Climate 27, 720–739 (2014) .

Pearl J. Causality: Models, Reasoning, and Inference Cambridge University Press (2000) .

Pearl J. Linear models: a useful ‘microscope' for causal analysis. J. Causal Inference 1, 155–170 (2013) .

Eichler M. & Didelez V. On Granger-causality and the effect of interventions in time series. Lifetime Data Anal. 16, 3–32 (2010) . PubMed

Freeman L. C. Centrality in social networks conceptual clarification. Soc. Networks 1, 215–239 (1978) .

Philander S. G. H. El-Niño and the Southern Oscillation Academic press (1990) . PubMed

Cane M. A. The evolution of El Niño, past and future. Earth Planet. Sci. Lett. 230, 227–240 (2005) .

Wallace J. M. & Gutzler D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 109, 784–812 (1981) .

Ghil M. & Mo K. Intraseasonal Oscillations in the Global Atmosphere. Part I: Northern Hemisphere and Tropics. J. Atmos. Sci 48, 752–779 (1991) .

Kalnay E. et al.. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996) .

Runge J. Quantifying information transfer and mediation along causal pathways in complex systems, Preprint at http://arxiv.org/abs/1508.03808 [stat.ME] (2015) . PubMed

Webster P. J. et al.. Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans 103, 14451–14510 (1998) .

Hastie T., Tibshirani R. & Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn Springer (2009) .

Vautard R. & Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989) .

Hlinka J. et al.. Reliability of inference of directed climate networks using conditional mutual information. Entropy 15, 2023–2045 (2013) .

Spirtes P. & Glymour C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991) .

Eichler M. Graphical modelling of multivariate time series. Probab. Theory Relat. Fields 153, 233–268 (2012) .

Lauritzen S. L. Graphical Models Oxford University Press (1996) .

Storch H. V. & Zwiers F. W. Statistical Analysis in Climate Research Cambridge University Press (1999) .

Wright S. The method of path coefficients. Ann. Math. Stat. 5, 161–215 (1934) .

Kumar K. K., Rajagopalan B. & Cane M. A. On the weakening relationship between the Indian Monsoon and ENSO. Science 284, 2156–2159 (1999) . PubMed

Hosking J. S., Russo M. R., Braesicke P. & Pyle J. A. Tropical convective transport and the Walker circulation. Atmos. Chem. Phys. 12, 9791–9797 (2012) .

Petoukhov V., Rahmstorf S., Petri S. & Schellnhuber H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013) . PubMed PMC

Lau W. & Kim K. The 2010 Pakistan flood and Russian heat wave: teleconnection of hydromete-orological extremes. J. Hydrometeor. 13, 392–403 (2012) .

Ghil M. & Robertson A. W. ‘Waves' versus ‘particles' in the atmosphere's phase space: a pathway to long-range forecasting? Proc. Natl Acad. Sci. USA 99, 2493–2500 (2002) . PubMed PMC

Lau K. & Yang S. in Encyclopedia of Atmospheric Sciences ed. Holton J. R. 2505–2510Academic Press (2003) .

Paluš M. Multiscale atmospheric dynamics: cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 112, 078702 (2014) . PubMed

Moron V., Robertson A. W., Qian J.-H. & Ghil M. Weather types across the Maritime Continent: from the diurnal cycle to interannual variations. Front. Environ. Sci. 2, 65 (2015) .

Coluzzi B., Ghil M., Hallegatte S. & Weisbuch G. Boolean delay equations on networks in economics and the geosciences. Int. J. Bifurcat. Chaos 21, 3511–3548 (2011) .

Runge J., Heitzig J., Marwan N. & Kurths J. Quantifying causal coupling strength: a lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E 86, 061121 (2012) . PubMed

Pall P. et al.. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011) . PubMed

Hannart A., Pearl J., Otto F., Naveau P. & Ghil M. Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteor. Soc. Early online release at http://dx.doi.org/10.1175/BAMS-D-14-00034.1 (2015) . DOI

Runge J., Donner R. & Kurths J. Optimal model-free prediction from multivariate time series. Phys. Rev. E 91, 052909 (2015) . PubMed

VanderWeele T. Explanation in causal inference: methods for mediation and interaction Oxford University Press (2015) .

Hardle W., Horowitz J. & Kreiss J.-P. Bootstrap methods for time series. Int. Stat. Rev. 71, 435–459 (2003) .

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...