Causes of extreme events revealed by Rényi information transfer

. 2024 Jul 26 ; 10 (30) : eadn1721. [epub] 20240726

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39058777

Information-theoretic generalization of Granger causality principle, based on evaluation of conditional mutual information, also known as transfer entropy (CMI/TE), is redefined in the framework of Rényi entropy (RCMI/RTE). Using numerically generated data with a defined causal structure and examples of real data from the climate system, it is demonstrated that RCMI/RTE is able to identify the cause variable responsible for the occurrence of extreme values in an effect variable. In the presented example, the Siberian High was identified as the cause responsible for the increased probability of cold extremes in the winter and spring surface air temperature in Europe, while the North Atlantic Oscillation and blocking events can induce shifts of the whole temperature probability distribution.

Zobrazit více v PubMed

M. Mudelsee, Statistical Analysis of Climate Extremes (Cambridge Univ. Press, 2020).

S. Albeverio, V. Jentsch, H. Kantz, Extreme Events in Nature and Society (Springer Science & Business Media, 2006).

Ghil M., Yiou P., Hallegatte S., Malamud B. D., Naveau P., Soloviev A., Friederichs P., Keilis-Borok V., Kondrashov D., Kossobokov V., Mestre O., Nicolis C., Rust H. W., Shebalin P., Vrac M., Witt A., Zaliapin I., Extreme events: Dynamics, statistics and prediction. Nonlinear Process Geophys. 18, 295–350 (2011).

Farazmand M., Sapsis T. P., Extreme events: Mechanisms and prediction. Appl. Mech. Rev. 71, 050801 (2019).

N. Wiener, in Modern Mathematics for the Engineer, E. F. Beckenbach, Ed. (McGraw-Hill, 1956), pp. 125–139.

C. W. J. Granger, in Les Prix Nobel. The Nobel Prizes 2003, T. Frängsmyr, Ed. (Nobel Foundation, 2004), pp. 360–366.

Granger C. W. J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424 (1969).

Quiroga R. Q., Arnhold J., Grassberger P., Learning driver-response relationships from synchronization patterns. Phys. Rev. E 61, 5142–5148 (2000). PubMed

Ye H., Deyle E. R., Gilarranz L. J., Sugihara G., Distinguishing time-delayed causal interactions using convergent cross mapping. Sci. Rep. 5, 14750 (2015). PubMed PMC

Krakovská A., Jakubík J., Chvosteková M., Coufal D., Jajcay N., Paluš M., Comparison of six methods for the detection of causality in a bivariate time series. Phys. Rev. E 97, 042207 (2018). PubMed

Krakovská A., Hanzely F., Testing for causality in reconstructed state spaces by an optimized mixed prediction method. Phys. Rev. E 94, 052203 (2016). PubMed

Huang Y., Fu Z., Franzke C. L. E., Detecting causality from time series in a machine learning framework. Chaos 30, 063116 (2020). PubMed

Kathpalia A., Manshour P., Paluš M., Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series. Sci. Rep. 12, 14170 (2022). PubMed PMC

T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).

Hlaváčková-Schindler K., Paluš M., Vejmelka M., Bhattacharya J., Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441, 1–46 (2007).

Paluš M., Komárek V., Hrnčíř Z., Štěrbová K., Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E 63, 046211 (2001). PubMed

Paluš M., Vejmelka M., Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E 75, 056211 (2007). PubMed

Schreiber T., Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000). PubMed

Gencaga D., Transfer entropy. Entropy 20, 288 (2018). PubMed PMC

Hlinka J., Hartman D., Vejmelka M., Runge J., Marwan N., Kurths J., Palus M., Reliability of inference of directed climate networks using conditional mutual information. Entropy 15, 2023–2045 (2013).

Paluš M., Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 112, 078702 (2014). PubMed

Deza J. I., Barreiro M., Masoller C., Assessing the direction of climate interactions by means of complex networks and information theoretic tools. Chaos 25, 033105 (2015). PubMed

Manshour P., Balasis G., Consolini G., Papadimitriou C., Paluš M., Causality and information transfer between the solar wind and the magnetosphere–ionosphere system. Entropy 23, 390 (2021). PubMed PMC

Ebert-Uphoff I., Deng Y., Causal discovery for climate research using graphical models. J. Climate 25, 5648–5665 (2012).

Runge J., Petoukhov V., Donges J. F., Hlinka J., Jajcay N., Vejmelka M., Hartman D., Marwan N., Paluš M., Kurths J., Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 6, 8502 (2015). PubMed PMC

Stips A., Macias D., Coughlan C., Garcia-Gorriz E., Liang X. S., On the causal structure between CO2 and global temperature. Sci. Rep. 6, 21691 (2016). PubMed PMC

Nowack P., Runge J., Eyring V., Haigh J. D., Causal networks for climate model evaluation and constrained projections. Nat. Commun. 11, 1415 (2020). PubMed PMC

Runge J., Bathiany S., Bollt E., Camps-Valls G., Coumou D., Deyle E., Glymour C., Kretschmer M., Mahecha M. D., Munoz-Mari J., van Nes E. H., Peters J., Quax R., Reichstein M., Scheffer M., Schoelkopf B., Spirtes P., Sugihara G., Sun J., Zhang K., Zscheischler J., Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019). PubMed PMC

Docquier D., Vannitsem S., Ragone F., Wyser K., Liang X. S., Causal links between Arctic sea ice and its potential drivers based on the rate of information transfer. Geophys. Res. Lett. 49, e2021GL095892 (2022).

Runge J., Gerhardus A., Varando G., Eyring V., Camps-Valls G., Causal inference for time series. Nat. Rev. Earth Environ. 4, 487–505 (2023).

Hannart A., Pearl J., Otto F. E. L., Naveau P., Ghil M., Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteorol. Soc. 97, 99–110 (2016).

Hannart A., Carrassi A., Bocquet M., Ghil M., Naveau P., Pulido M., Ruiz J., Tandeo P., DADA: Data assimilation for the detection and attribution of weather and climate-related events. Clim. Change 136, 155–174 (2016).

Zanin M., On causality of extreme events. PeerJ 4, e2111 (2016). PubMed PMC

Gnecco N., Meinshausen N., Peters J., Engelke S., Causal discovery in heavy-tailed models. Ann. Stat. 49, 1755 (2021).

Engelke S., Hitz A. S., Graphical models for extremes. J. R. Stat. Soc. Series B Stat. Methodol. 82, 871–932 (2020).

S. Engelke, J. Ivanovs, in Annual Review of Statistics and Its Application, N. Reid, Ed. (Annual Reviews, 2021), vol. 8, pp. 241–270.

Klueppelberg C., Krali M., Estimating an extreme Bayesian network via scalings. J. Multivar. Anal. 181, 104672 (2021).

A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman, Ed. (University of California Press, 1961), vol. 1, pp. 547–561.

Jizba P., Kleinert H., Shefaat M., Rényi’s information transfer between financial time series. Phys. A Stat. Mech. Appl. 391, 2971–2989 (2012).

Marshall J., Kushnir Y., Battisti D., Chang P., Czaja A., Dickson R., Hurrell J., McCartney M., Saravanan R., Visbeck M., North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol. 21, 1863–1898 (2001).

Buehler T., Raible C. C., Stocker T. F., The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A 63, 212–222 (2021).

Kautz L.-A., Martius O., Pfahl S., Pinto J. G., Ramos A. M., Sousa P. M., Woollings T., Atmospheric blocking and weather extremes over the Euro-Atlantic sector—A review. Weather Clim. Dyn. 3, 305–336 (2022).

Cohen J., Saito K., Entekhabi D., The role of the Siberian high in northern hemisphere climate variability. Geophys. Res. Lett. 28, 299–302 (2001).

Panagiotopoulos F., Shahgedanova M., Hannachi A., Stephenson D. B., Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Climate 18, 1411–1422 (2005).

Tubi A., Dayan U., The Siberian High: Teleconnections, extremes and association with the Icelandic Low. Int. J. Climatol. 33, 1357–1366 (2013).

Mandelbrot B., The Pareto-Levy law and the distribution of income. Int. Econ. Rev. 1, 79 (1960).

Barnett L., Seth A. K., The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68 (2014). PubMed

Pokorná L., Huth R., Climate impacts of the NAO are sensitive to how the NAO is defined. Theor. Appl. Climatol. 119, 639–652 (2015).

Wang G., Zhang N., Fan K., Paluš M., Central European air temperature: Driving force analysis and causal influence of NAO. Theor. Appl. Climatol. 137, 1421–1427 (2019).

Zhang N., Wang G., Detecting the causal interaction between Siberian high and winter surface air temperature over northeast Asia. Atmos. Res. 245, 105066 (2020).

J. Hurrell, R. Dickson, in Marine Ecosystems and Climate Variation: The North Atlantic: A Comparative Perspective, N. Stenseth, G. Ottersen, J. Hurrell, Eds. (Oxford Univ. Press, 2005), pp. 15–31.

Battiston F., Amico E., Barrat A., Bianconi G., Ferraz de Arruda G., Franceschiello B., Iacopini I., Kéfi S., Latora V., Moreno Y., Murray M. M., Peixoto T. P., Vaccarino F., Petri G., The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

Jizba P., Lavička H., Tabachová Z., Causal inference in time series in terms of Rényi transfer entropy. Entropy 24, 855 (2022). PubMed PMC

Mi Y., Lin A., Kernel based multiscale partial Renyi transfer entropy and its applications. Commun. Nonlinear Sci. Numer. Simul. 119, 107084 (2023).

Fraser A. M., Swinney H. L., Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986). PubMed

F. Takens, in Dynamical Systems and Turbulence, Warwick 1980, D.A. Rand, L.-S. Young, Eds. (Springer, 1981), pp. 366–381.

Paluš M., From nonlinearity to causality: Statistical testing and inference of physical mechanisms underlying complex dynamics. Contemp. Phys. 48, 307–348 (2007).

Lancaster G., Iatsenko D., Pidde A., Ticcinelli V., Stefanovska A., Surrogate data for hypothesis testing of physical systems. Phys. Rep. 748, 1–60 (2018).

Klein Tank A., Wijngaard J., Können G., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., Müller-Westermeier G., Tzanakou M., Szalai S., Pálsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., van Engelen A. F. V., Forland E., Mietus M., Coelho F., Mares C., Razuvaev V., Nieplova E., Cegnar T., Antonio López J., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L. V., Petrovic P., Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 22, 1441–1453 (2002).

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D., The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met. Soc. 77, 437–471 (1996).

Tibaldi S., Molteni F., On the operational predictability of blocking. Tellus A 42, 343–365 (1990).

Cornes R. C., van der Schrier G., van den Besselaar E. J. M., Jones P. D., An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...