Causality and Information Transfer Between the Solar Wind and the Magnetosphere-Ionosphere System

. 2021 Mar 25 ; 23 (4) : . [epub] 20210325

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33806048

Grantová podpora
GA19-16066S Grantová Agentura České Republiky
Praemium Academiae awarded to M. Palus Akademie Věd České Republiky

An information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth's magnetosphere-ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min. Using a properly conditioned causality measure, no causal link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be detected. The observed causal relations can be described as linear time-delayed information transfer.

Zobrazit více v PubMed

Schwenn R. Space weather: The solar perspective. Living Rev. Sol. Phys. 2006;3:1–72. doi: 10.12942/lrsp-2006-2. DOI

Chang T. Low-dimensional behavior and symmetry breaking of stochastic systems near criticality-can these effects be observed in space and in the laboratory? IEEE Trans. Plasma Sci. 1992;20:691–694. doi: 10.1109/27.199515. DOI

Consolini G. Self-organized criticality: A new paradigm for the magnetotail dynamics. Fractals. 2002;10:275–283. doi: 10.1142/S0218348X02001397. DOI

Valdivia J.A., Rogan J., Muñoz V., Toledo B.A., Stepanova M. The magnetosphere as a complex system. Adv. Space Res. 2013;51:1934–1941. doi: 10.1016/j.asr.2012.04.004. DOI

Watkins N., Freeman M., Chapman S., Dendy R. Testing the SOC hypothesis for the magnetosphere. J. Atmos. Sol. Terr. Phys. 2001;63:1435–1445. doi: 10.1016/S1364-6826(00)00245-5. DOI

Balasis G., Daglis I., Kapiris P., Mandea M., Vassiliadis D., Eftaxias K. From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics. Ann. Geophys. 2006;24:3557–3567. doi: 10.5194/angeo-24-3557-2006. DOI

Consolini G., De Michelis P., Tozzi R. On the Earth’s magnetospheric dynamics: Nonequilibrium evolution and the fluctuation theorem. J. Geophys. Res. Space Phys. 2008;113 doi: 10.1029/2008JA013074. DOI

Pulkkinen T., Palmroth M., Tanskanen E., Ganushkina N.Y., Shukhtina M., Dmitrieva N. Solar wind—Magnetosphere coupling: A review of recent results. J. Atmos. Sol. Terr. Phys. 2007;69:256–264. doi: 10.1016/j.jastp.2006.05.029. DOI

Akasofu S.I. Polar and Magnetospheric Substorms. D. Reidell; Norwell, MA, USA: 1968. Polar Magnetic Substorm.

Gonzalez W., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B., Vasyliunas V. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994;99:5771–5792. doi: 10.1029/93JA02867. DOI

Kamide Y., Baumjohann W., Daglis I., Gonzalez W., Grande M., Joselyn J., McPherron R., Phillips J., Reeves E., Rostoker G., et al. Current understanding of magnetic storms: Storm-substorm relationships. J. Geophys. Res. Space Phys. 1998;103:17705–17728. doi: 10.1029/98JA01426. DOI

Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966;71:785–801. doi: 10.1029/JZ071i003p00785. DOI

Wanliss J.A., Showalter K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 2006;111 doi: 10.1029/2005JA011034. DOI

Sharma A.S., Baker D.N., Grande M., Kamide Y., Lakhina G.S., McPherron R.M., Reeves G.D., Rostoker G., Vondrak R., Zelenyiio L. Disturbances in Geospace: The Storm-Substorm Relationship. American Geophysical Union (AGU); Washington, DC, USA: 2003. The Storm-Substorm Relationship: Current Understanding and Outlook; pp. 1–14.

Akasofu S.I., Cain J.C., Chapman S. The magnetic field of a model radiation belt, numerically computed. J. Geophys. Res. 1961;66:4013–4026. doi: 10.1029/JZ066i012p04013. DOI

Alberti T., Consolini G., Lepreti F., Laurenza M., Vecchio A., Carbone V. Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. Space Phys. 2017;122:4266–4283. doi: 10.1002/2016JA023175. DOI

De Michelis P., Consolini G., Materassi M., Tozzi R. An information theory approach to the storm-substorm relationship. J. Geophys. Res. Space Phys. 2011;116 doi: 10.1029/2011JA016535. DOI

Materassi M., Ciraolo L., Consolini G., Smith N. Predictive Space Weather: An information theory approach. Adv. Space Res. 2011;47:877–885. doi: 10.1016/j.asr.2010.10.026. DOI

Johnson J.R., Wing S. External versus internal triggering of substorms: An information-theoretical approach. Geophys. Res. Lett. 2014;41:5748–5754. doi: 10.1002/2014GL060928. DOI

Wing S., Johnson J.R., Camporeale E., Reeves G.D. Information theoretical approach to discovering solar wind drivers of the outer radiation belt. J. Geophys. Res. Space Phys. 2016;121:9378–9399. doi: 10.1002/2016JA022711. DOI

Runge J., Balasis G., Daglis I.A., Papadimitriou C., Donner R.V. Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-35250-5. PubMed DOI PMC

Stumpo M., Consolini G., Alberti T., Quattrociocchi V. Measuring Information Coupling between the Solar Wind and the Magnetosphere–Ionosphere System. Entropy. 2020;22:276. doi: 10.3390/e22030276. PubMed DOI PMC

Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85:461–464. doi: 10.1103/PhysRevLett.85.461. PubMed DOI

Runge J., Heitzig J., Petoukhov V., Kurths J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 2012;108:258701. doi: 10.1103/PhysRevLett.108.258701. PubMed DOI

Runge J., Heitzig J., Marwan N., Kurths J. Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E. 2012;86:061121. doi: 10.1103/PhysRevE.86.061121. PubMed DOI

Perreault P., Akasofu S. A study of geomagnetic storms. Geophys. J. Int. 1978;54:547–573. doi: 10.1111/j.1365-246X.1978.tb05494.x. DOI

Klimas A., Vassiliadis D., Baker D., Roberts D. The organized nonlinear dynamics of the magnetosphere. J. Geophys. Res. Space Phys. 1996;101:13089–13113. doi: 10.1029/96JA00563. DOI

Iyemori T. Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomag. Geoelec. 1990;42:1249–1265. doi: 10.5636/jgg.42.1249. DOI

Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI

Paluš M. Detecting nonlinearity in multivariate time series. Phys. Lett. A. 1996;213:138–147. doi: 10.1016/0375-9601(96)00116-8. DOI

Cover T., Thomas J. Elements of Information Theory. J. Wiley; New York, NY, USA: 1991.

Paluš M., Albrecht V., Dvořák I. Information theoretic test for nonlinearity in time series. Phys. Lett. A. 1993;175:203–209. doi: 10.1016/0375-9601(93)90827-M. DOI

Paluš M., Komárek V., Hrnčíř Z., Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E. 2001;63:046211. doi: 10.1103/PhysRevE.63.046211. PubMed DOI

Hlaváčková-Schindler K., Paluš M., Vejmelka M., Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007;441:1–46. doi: 10.1016/j.physrep.2006.12.004. DOI

Paluš M., Vejmelka M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E. 2007;75:056211. doi: 10.1103/PhysRevE.75.056211. PubMed DOI

Barnett L., Barrett A.B., Seth A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009;103:238701. doi: 10.1103/PhysRevLett.103.238701. PubMed DOI

Takens F. Detecting strange attractors in turbulence. In: Rand D.A., Young L.S., editors. Dynamical Systems and Turbulence, Warwick 1980. Volume 898. Springer; Berlin, Germany: 1981. pp. 366–381. Lecture Notes in Mathematics.

Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 1986;33:1134. doi: 10.1103/PhysRevA.33.1134. PubMed DOI

Paluš M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 2014;112:078702. doi: 10.1103/PhysRevLett.112.078702. PubMed DOI

Wibral M., Pampu N., Priesemann V., Siebenhühner F., Seiwert H., Lindner M., Lizier J.T., Vicente R. Measuring information-transfer delays. PLoS ONE. 2013;8:e55809. doi: 10.1371/journal.pone.0055809. PubMed DOI PMC

San Liang X. Information flow and causality as rigorous notions ab initio. Phys. Rev. E. 2016;94:052201. doi: 10.1103/PhysRevE.94.052201. PubMed DOI

Aurell E., Del Ferraro G. Causal analysis, correlation-response, and dynamic cavity. J. Phys. Conf. Ser. 2016;699:012002. doi: 10.1088/1742-6596/699/1/012002. DOI

Baldovin M., Cecconi F., Vulpiani A. Understanding causation via correlations and linear response theory. Phys. Rev. Res. 2020;2:043436. doi: 10.1103/PhysRevResearch.2.043436. DOI

Marconi U.M.B., Puglisi A., Rondoni L., Vulpiani A. Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep. 2008;461:111–195. doi: 10.1016/j.physrep.2008.02.002. DOI

Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. Testing for nonlinearity in time series: The method of surrogate data. Phys. D. 1992;58:77–94. doi: 10.1016/0167-2789(92)90102-S. DOI

Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E. 2002;65:041903. doi: 10.1103/PhysRevE.65.041903. PubMed DOI

Paluš M., Hoyer D. Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng. Med. Biol. Mag. 1998;17:40–45. doi: 10.1109/51.731319. PubMed DOI

Maggiolo R., Hamrin M., De Keyser J., Pitkänen T., Cessateur G., Gunell H., Maes L. The delayed time response of geomagnetic activity to the solar wind. J. Geophys. Res. Space Phys. 2017;122:11–109. doi: 10.1002/2016JA023793. DOI

Daglis I.A., Thorne R.M., Baumjohann W., Orsini S. The terrestrial ring current: Origin, formation, and decay. Rev. Geophys. 1999;37:407–438. doi: 10.1029/1999RG900009. DOI

Fok M.C., Moore T.E., Delcourt D.C. Modeling of inner plasma sheet and ring current during substorms. J. Geophys. Res. Space Phys. 1999;104:14557–14569. doi: 10.1029/1999JA900014. DOI

Ganushkina N.Y., Pulkkinen T., Fritz T. Role of substorm-associated impulsive electric fields in the ring current development during storms. Ann. Geophys. 2005;23:579–591. doi: 10.5194/angeo-23-579-2005. DOI

Paluš M., Krakovská A., Jakubík J., Chvosteková M. Causality, dynamical systems and the arrow of time. Chaos. 2018;28:075307. doi: 10.1063/1.5019944. PubMed DOI

Chvosteková M., Jakubík J., Krakovská A. Granger causality on forward and reversed time series. Entropy. 2021 in press. PubMed PMC

Runge J., Petoukhov V., Donges J.F., Hlinka J., Jajcay N., Vejmelka M., Hartman D., Marwan N., Paluš M., Kurths J. Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 2015;6:1–10. doi: 10.1038/ncomms9502. PubMed DOI PMC

Stramaglia S., Cortes J.M., Marinazzo D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New J. Phys. 2014;16:105003. doi: 10.1088/1367-2630/16/10/105003. DOI

Barrett A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E. 2015;91:052802. doi: 10.1103/PhysRevE.91.052802. PubMed DOI

Lizier J.T., Bertschinger N., Jost J., Wibral M. Information decomposition of target effects from multi-source interactions: Perspectives on previous, current and future work. Entropy. 2018;20:307. doi: 10.3390/e20040307. PubMed DOI PMC

Balasis G., Daglis I.A., Papadimitriou C., Kalimeri M., Anastasiadis A., Eftaxias K. Dynamical complexity in Dst time series using non-extensive Tsallis entropy. Geophys. Res. Lett. 2008;35 doi: 10.1029/2008GL034743. DOI

Balasis G., Daglis I.A., Papadimitriou C., Kalimeri M., Anastasiadis A., Eftaxias K. Investigating dynamical complexity in the magnetosphere using various entropy measures. J. Geophys. Res. Space Phys. 2009;114 doi: 10.1029/2008JA014035. DOI

Balasis G., Donner R.V., Potirakis S.M., Runge J., Papadimitriou C., Daglis I.A., Eftaxias K., Kurths J. Statistical mechanics and information-theoretic perspectives on complexity in the earth system. Entropy. 2013;15:4844–4888. doi: 10.3390/e15114844. DOI

Balasis G., Papadimitriou C., Boutsi A.Z., Daglis I.A., Giannakis O., Anastasiadis A., De Michelis P., Consolini G. Dynamical complexity in Swarm electron density time series using Block entropy. EPL Europhys. Lett. 2020;131:69001. doi: 10.1209/0295-5075/131/69001. PubMed DOI PMC

De Michelis P., Pignalberi A., Consolini G., Coco I., Tozzi R., Pezzopane M., Giannattasio F., Balasis G. On the 2015 St. Patrick’s Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission. J. Geophys. Res. Space Phys. 2020;125:e2020JA027934. doi: 10.1029/2020JA027934. DOI

Papadimitriou C., Balasis G., Boutsi A.Z., Daglis I.A., Giannakis O., Anastasiadis A., Michelis P., Consolini G. Dynamical Complexity of the 2015 St. Patrick’s Day Magnetic Storm at Swarm Altitudes Using Entropy Measures. Entropy. 2020;22:574. doi: 10.3390/e22050574. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Causes of extreme events revealed by Rényi information transfer

. 2024 Jul 26 ; 10 (30) : eadn1721. [epub] 20240726

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...