Causality and Information Transfer Between the Solar Wind and the Magnetosphere-Ionosphere System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-16066S
Grantová Agentura České Republiky
Praemium Academiae awarded to M. Palus
Akademie Věd České Republiky
PubMed
33806048
PubMed Central
PMC8064447
DOI
10.3390/e23040390
PII: e23040390
Knihovny.cz E-zdroje
- Klíčová slova
- causality, information transfer, solar wind-magnetosphere–ionosphere system, space weather, time reversal, time series,
- Publikační typ
- časopisecké články MeSH
An information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth's magnetosphere-ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min. Using a properly conditioned causality measure, no causal link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be detected. The observed causal relations can be described as linear time-delayed information transfer.
INAF Istituto di Astrofisica e Planetologia Spaziali 00133 Rome Italy
Space Applications and Research Consultancy SPARC P C 10551 Athens Greece
Zobrazit více v PubMed
Schwenn R. Space weather: The solar perspective. Living Rev. Sol. Phys. 2006;3:1–72. doi: 10.12942/lrsp-2006-2. DOI
Chang T. Low-dimensional behavior and symmetry breaking of stochastic systems near criticality-can these effects be observed in space and in the laboratory? IEEE Trans. Plasma Sci. 1992;20:691–694. doi: 10.1109/27.199515. DOI
Consolini G. Self-organized criticality: A new paradigm for the magnetotail dynamics. Fractals. 2002;10:275–283. doi: 10.1142/S0218348X02001397. DOI
Valdivia J.A., Rogan J., Muñoz V., Toledo B.A., Stepanova M. The magnetosphere as a complex system. Adv. Space Res. 2013;51:1934–1941. doi: 10.1016/j.asr.2012.04.004. DOI
Watkins N., Freeman M., Chapman S., Dendy R. Testing the SOC hypothesis for the magnetosphere. J. Atmos. Sol. Terr. Phys. 2001;63:1435–1445. doi: 10.1016/S1364-6826(00)00245-5. DOI
Balasis G., Daglis I., Kapiris P., Mandea M., Vassiliadis D., Eftaxias K. From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics. Ann. Geophys. 2006;24:3557–3567. doi: 10.5194/angeo-24-3557-2006. DOI
Consolini G., De Michelis P., Tozzi R. On the Earth’s magnetospheric dynamics: Nonequilibrium evolution and the fluctuation theorem. J. Geophys. Res. Space Phys. 2008;113 doi: 10.1029/2008JA013074. DOI
Pulkkinen T., Palmroth M., Tanskanen E., Ganushkina N.Y., Shukhtina M., Dmitrieva N. Solar wind—Magnetosphere coupling: A review of recent results. J. Atmos. Sol. Terr. Phys. 2007;69:256–264. doi: 10.1016/j.jastp.2006.05.029. DOI
Akasofu S.I. Polar and Magnetospheric Substorms. D. Reidell; Norwell, MA, USA: 1968. Polar Magnetic Substorm.
Gonzalez W., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B., Vasyliunas V. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994;99:5771–5792. doi: 10.1029/93JA02867. DOI
Kamide Y., Baumjohann W., Daglis I., Gonzalez W., Grande M., Joselyn J., McPherron R., Phillips J., Reeves E., Rostoker G., et al. Current understanding of magnetic storms: Storm-substorm relationships. J. Geophys. Res. Space Phys. 1998;103:17705–17728. doi: 10.1029/98JA01426. DOI
Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966;71:785–801. doi: 10.1029/JZ071i003p00785. DOI
Wanliss J.A., Showalter K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 2006;111 doi: 10.1029/2005JA011034. DOI
Sharma A.S., Baker D.N., Grande M., Kamide Y., Lakhina G.S., McPherron R.M., Reeves G.D., Rostoker G., Vondrak R., Zelenyiio L. Disturbances in Geospace: The Storm-Substorm Relationship. American Geophysical Union (AGU); Washington, DC, USA: 2003. The Storm-Substorm Relationship: Current Understanding and Outlook; pp. 1–14.
Akasofu S.I., Cain J.C., Chapman S. The magnetic field of a model radiation belt, numerically computed. J. Geophys. Res. 1961;66:4013–4026. doi: 10.1029/JZ066i012p04013. DOI
Alberti T., Consolini G., Lepreti F., Laurenza M., Vecchio A., Carbone V. Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. Space Phys. 2017;122:4266–4283. doi: 10.1002/2016JA023175. DOI
De Michelis P., Consolini G., Materassi M., Tozzi R. An information theory approach to the storm-substorm relationship. J. Geophys. Res. Space Phys. 2011;116 doi: 10.1029/2011JA016535. DOI
Materassi M., Ciraolo L., Consolini G., Smith N. Predictive Space Weather: An information theory approach. Adv. Space Res. 2011;47:877–885. doi: 10.1016/j.asr.2010.10.026. DOI
Johnson J.R., Wing S. External versus internal triggering of substorms: An information-theoretical approach. Geophys. Res. Lett. 2014;41:5748–5754. doi: 10.1002/2014GL060928. DOI
Wing S., Johnson J.R., Camporeale E., Reeves G.D. Information theoretical approach to discovering solar wind drivers of the outer radiation belt. J. Geophys. Res. Space Phys. 2016;121:9378–9399. doi: 10.1002/2016JA022711. DOI
Runge J., Balasis G., Daglis I.A., Papadimitriou C., Donner R.V. Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-35250-5. PubMed DOI PMC
Stumpo M., Consolini G., Alberti T., Quattrociocchi V. Measuring Information Coupling between the Solar Wind and the Magnetosphere–Ionosphere System. Entropy. 2020;22:276. doi: 10.3390/e22030276. PubMed DOI PMC
Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85:461–464. doi: 10.1103/PhysRevLett.85.461. PubMed DOI
Runge J., Heitzig J., Petoukhov V., Kurths J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 2012;108:258701. doi: 10.1103/PhysRevLett.108.258701. PubMed DOI
Runge J., Heitzig J., Marwan N., Kurths J. Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E. 2012;86:061121. doi: 10.1103/PhysRevE.86.061121. PubMed DOI
Perreault P., Akasofu S. A study of geomagnetic storms. Geophys. J. Int. 1978;54:547–573. doi: 10.1111/j.1365-246X.1978.tb05494.x. DOI
Klimas A., Vassiliadis D., Baker D., Roberts D. The organized nonlinear dynamics of the magnetosphere. J. Geophys. Res. Space Phys. 1996;101:13089–13113. doi: 10.1029/96JA00563. DOI
Iyemori T. Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomag. Geoelec. 1990;42:1249–1265. doi: 10.5636/jgg.42.1249. DOI
Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Paluš M. Detecting nonlinearity in multivariate time series. Phys. Lett. A. 1996;213:138–147. doi: 10.1016/0375-9601(96)00116-8. DOI
Cover T., Thomas J. Elements of Information Theory. J. Wiley; New York, NY, USA: 1991.
Paluš M., Albrecht V., Dvořák I. Information theoretic test for nonlinearity in time series. Phys. Lett. A. 1993;175:203–209. doi: 10.1016/0375-9601(93)90827-M. DOI
Paluš M., Komárek V., Hrnčíř Z., Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E. 2001;63:046211. doi: 10.1103/PhysRevE.63.046211. PubMed DOI
Hlaváčková-Schindler K., Paluš M., Vejmelka M., Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007;441:1–46. doi: 10.1016/j.physrep.2006.12.004. DOI
Paluš M., Vejmelka M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E. 2007;75:056211. doi: 10.1103/PhysRevE.75.056211. PubMed DOI
Barnett L., Barrett A.B., Seth A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009;103:238701. doi: 10.1103/PhysRevLett.103.238701. PubMed DOI
Takens F. Detecting strange attractors in turbulence. In: Rand D.A., Young L.S., editors. Dynamical Systems and Turbulence, Warwick 1980. Volume 898. Springer; Berlin, Germany: 1981. pp. 366–381. Lecture Notes in Mathematics.
Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 1986;33:1134. doi: 10.1103/PhysRevA.33.1134. PubMed DOI
Paluš M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 2014;112:078702. doi: 10.1103/PhysRevLett.112.078702. PubMed DOI
Wibral M., Pampu N., Priesemann V., Siebenhühner F., Seiwert H., Lindner M., Lizier J.T., Vicente R. Measuring information-transfer delays. PLoS ONE. 2013;8:e55809. doi: 10.1371/journal.pone.0055809. PubMed DOI PMC
San Liang X. Information flow and causality as rigorous notions ab initio. Phys. Rev. E. 2016;94:052201. doi: 10.1103/PhysRevE.94.052201. PubMed DOI
Aurell E., Del Ferraro G. Causal analysis, correlation-response, and dynamic cavity. J. Phys. Conf. Ser. 2016;699:012002. doi: 10.1088/1742-6596/699/1/012002. DOI
Baldovin M., Cecconi F., Vulpiani A. Understanding causation via correlations and linear response theory. Phys. Rev. Res. 2020;2:043436. doi: 10.1103/PhysRevResearch.2.043436. DOI
Marconi U.M.B., Puglisi A., Rondoni L., Vulpiani A. Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep. 2008;461:111–195. doi: 10.1016/j.physrep.2008.02.002. DOI
Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. Testing for nonlinearity in time series: The method of surrogate data. Phys. D. 1992;58:77–94. doi: 10.1016/0167-2789(92)90102-S. DOI
Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E. 2002;65:041903. doi: 10.1103/PhysRevE.65.041903. PubMed DOI
Paluš M., Hoyer D. Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng. Med. Biol. Mag. 1998;17:40–45. doi: 10.1109/51.731319. PubMed DOI
Maggiolo R., Hamrin M., De Keyser J., Pitkänen T., Cessateur G., Gunell H., Maes L. The delayed time response of geomagnetic activity to the solar wind. J. Geophys. Res. Space Phys. 2017;122:11–109. doi: 10.1002/2016JA023793. DOI
Daglis I.A., Thorne R.M., Baumjohann W., Orsini S. The terrestrial ring current: Origin, formation, and decay. Rev. Geophys. 1999;37:407–438. doi: 10.1029/1999RG900009. DOI
Fok M.C., Moore T.E., Delcourt D.C. Modeling of inner plasma sheet and ring current during substorms. J. Geophys. Res. Space Phys. 1999;104:14557–14569. doi: 10.1029/1999JA900014. DOI
Ganushkina N.Y., Pulkkinen T., Fritz T. Role of substorm-associated impulsive electric fields in the ring current development during storms. Ann. Geophys. 2005;23:579–591. doi: 10.5194/angeo-23-579-2005. DOI
Paluš M., Krakovská A., Jakubík J., Chvosteková M. Causality, dynamical systems and the arrow of time. Chaos. 2018;28:075307. doi: 10.1063/1.5019944. PubMed DOI
Chvosteková M., Jakubík J., Krakovská A. Granger causality on forward and reversed time series. Entropy. 2021 in press. PubMed PMC
Runge J., Petoukhov V., Donges J.F., Hlinka J., Jajcay N., Vejmelka M., Hartman D., Marwan N., Paluš M., Kurths J. Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 2015;6:1–10. doi: 10.1038/ncomms9502. PubMed DOI PMC
Stramaglia S., Cortes J.M., Marinazzo D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New J. Phys. 2014;16:105003. doi: 10.1088/1367-2630/16/10/105003. DOI
Barrett A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E. 2015;91:052802. doi: 10.1103/PhysRevE.91.052802. PubMed DOI
Lizier J.T., Bertschinger N., Jost J., Wibral M. Information decomposition of target effects from multi-source interactions: Perspectives on previous, current and future work. Entropy. 2018;20:307. doi: 10.3390/e20040307. PubMed DOI PMC
Balasis G., Daglis I.A., Papadimitriou C., Kalimeri M., Anastasiadis A., Eftaxias K. Dynamical complexity in Dst time series using non-extensive Tsallis entropy. Geophys. Res. Lett. 2008;35 doi: 10.1029/2008GL034743. DOI
Balasis G., Daglis I.A., Papadimitriou C., Kalimeri M., Anastasiadis A., Eftaxias K. Investigating dynamical complexity in the magnetosphere using various entropy measures. J. Geophys. Res. Space Phys. 2009;114 doi: 10.1029/2008JA014035. DOI
Balasis G., Donner R.V., Potirakis S.M., Runge J., Papadimitriou C., Daglis I.A., Eftaxias K., Kurths J. Statistical mechanics and information-theoretic perspectives on complexity in the earth system. Entropy. 2013;15:4844–4888. doi: 10.3390/e15114844. DOI
Balasis G., Papadimitriou C., Boutsi A.Z., Daglis I.A., Giannakis O., Anastasiadis A., De Michelis P., Consolini G. Dynamical complexity in Swarm electron density time series using Block entropy. EPL Europhys. Lett. 2020;131:69001. doi: 10.1209/0295-5075/131/69001. PubMed DOI PMC
De Michelis P., Pignalberi A., Consolini G., Coco I., Tozzi R., Pezzopane M., Giannattasio F., Balasis G. On the 2015 St. Patrick’s Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission. J. Geophys. Res. Space Phys. 2020;125:e2020JA027934. doi: 10.1029/2020JA027934. DOI
Papadimitriou C., Balasis G., Boutsi A.Z., Daglis I.A., Giannakis O., Anastasiadis A., Michelis P., Consolini G. Dynamical Complexity of the 2015 St. Patrick’s Day Magnetic Storm at Swarm Altitudes Using Entropy Measures. Entropy. 2020;22:574. doi: 10.3390/e22050574. PubMed DOI PMC