Chromosome-level genome assembly of trypanosomatid parasite Lotmaria passim links chromosome duplication and divergence with infection of honey bees

. 2025 Dec 01 ; 26 (1) : 1083. [epub] 20251201

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41327030

Grantová podpora
2020-67013-31861 National Institute of Food and Agriculture
2020-67013-31861 National Institute of Food and Agriculture
2020-67013-31861 National Institute of Food and Agriculture
Research Grant Eva Crane Trust

Odkazy

PubMed 41327030
PubMed Central PMC12667155
DOI 10.1186/s12864-025-12082-y
PII: 10.1186/s12864-025-12082-y
Knihovny.cz E-zdroje

BACKGROUND: The protist family Trypanosomatidae includes parasites of insects, vertebrates, plants, and even other unicellular eukaryotes. The genomes of these species harbor clues to the evolution of parasitism, adaptation to new hosts, and infection of mammals. We present an analysis of a chromosome-level genome assembly of Lotmaria passim, the most prevalent known trypanosomatid of honey bees, linking genome sequence and organization to gene expression and infection of bees. RESULTS: The genome showed a high degree of synteny with assemblies of other trypanosomatids and especially to the closely related Leptomonas pyrrhocoris. It included four copies of chromosomes that shared ancestry with the tetrasomic Leishmania Chromosome 31 and are consistently supernumerary throughout Trypanosomatidae. However, these chromosomes showed lower similarity to L. passim relatives than did the genome overall, with sufficient variation across haplotypes to distinguish two separate disomic chromosomes. Transcriptomic analyses showed that these chromosomes are enriched in genes upregulated during bee infection, and each include five paralogs of the GP63 gene implicated in infection of both insects and mammals. Patterns of expression in bees suggested decreased protein synthesis, a shift from carbohydrate- to amino acid-based metabolism, and reduced cell motility in bee guts versus cell culture. In contrast, genes involved in cell adhesion were upregulated, consistent with the importance of attachment to insect tissue in this species and the family overall. CONCLUSIONS: Our analysis links differentiation of a conserved supernumerary chromosome with infection of bees, parallel to this chromosome's role in Leishmania infection of mammals and linking chromosome-level changes with adaptation to new hosts.

Zobrazit více v PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. 10.1016/j.pt.2012.11.001. PubMed DOI

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–22. 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–80. 10.1016/j.pt.2018.03.002. PubMed DOI

McGwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. QJM Int J Med. 2014;107:7–14. 10.1093/qjmed/hct116. PubMed DOI PMC

Steverding D. The history of leishmaniasis. Parasit Vectors. 2017;10:82. 10.1186/s13071-017-2028-5. PubMed DOI PMC

Steverding D. The history of African trypanosomiasis. Parasit Vectors. 2008;1:3. 10.1186/1756-3305-1-3. PubMed DOI PMC

Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al. PubMed DOI PMC

Kostygov AYu, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol. 2024;40:96–9. 10.1016/j.pt.2023.11.009. PubMed DOI

Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of PubMed DOI PMC

Jaskowska E, Butler C, Preston G, Kelly S. PubMed DOI PMC

Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9:190072. 10.1098/rsob.190072. PubMed DOI PMC

Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. 10.1017/S0031182018000951. PubMed DOI

Albanaz ATS, Gerasimov ES, Shaw JJ, Sádlová J, Lukeš J, Volf P, et al. Genome analysis of PubMed DOI PMC

Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV, Coqueiro-dos-Santos A, Marques CA, Black JA, et al. Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res. 2024;34:441–53. 10.1101/gr.278550.123. PubMed DOI PMC

Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, et al. Genomic and transcriptomic alterations in PubMed DOI PMC

Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises PubMed DOI PMC

Mannaert A, Downing T, Imamura H, Dujardin J-C. Adaptive mechanisms in pathogens: universal aneuploidy in PubMed DOI

Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. Characterization of two species of Trypanosomatidae from the honey bee PubMed DOI

Sadd BM, Barribeau SM. Heterogeneity in infection outcome: lessons from a bumblebee-trypanosome system. Parasite Immunol. 2013;35:339–49. 10.1111/pim.12043. PubMed DOI

Brown MJF, Schmid-Hempel R, Schmid-Hempel P. Strong context-dependent virulence in a host–parasite system: reconciling genetic evidence with theory. J Anim Ecol. 2003;72:994–1002. 10.1046/j.1365-2656.2003.00770.x. DOI

Brown MJF, Loosli R, Schmid-Hempel P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos. 2000;91:421–7. 10.1034/j.1600-0706.2000.910302.x. DOI

Buendía-Abad M, García-Palencia P, de Pablos LM, Alunda JM, Osuna A, Martín-Hernández R, et al. First description of PubMed DOI

Carreira de Paula J, García Olmedo P, Gómez-Moracho T, Buendía-Abad M, Higes M, Martín-Hernández R, et al. Promastigote EPS secretion and haptomonad biofilm formation as evolutionary adaptations of trypanosomatid parasites for colonizing honeybee hosts. Npj Biofilms Microbiomes. 2024;10:1–11. 10.1038/s41522-024-00492-x. PubMed DOI PMC

Arismendi N, Castro MP, Vargas M, Zapata C, Riveros G. The trypanosome

Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, et al. Comprehensive bee pathogen screening in Belgium reveals PubMed DOI PMC

Stevanovic J, Schwarz RS, Vejnovic B, Evans JD, Irwin RE, Glavinic U, et al. Species-specific diagnostics of PubMed DOI

Morimoto T, Kojima Y, Yoshiyama M, Kimura K, Yang B, Peng G, et al. Molecular detection of protozoan parasites infecting PubMed DOI

Bartolomé C, Buendía-Abad M, Benito M, Sobrino B, Amigo J, Carracedo A, et al. Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation. Sci Rep. 2020;10(1):10454. 10.1038/s41598-020-67183-3. PubMed DOI PMC

Hall RJ, Pragert H, Phiri BJ, Fan Q-H, Li X, Parnell A, et al. Apicultural practice and disease prevalence in DOI

Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, Andino R, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, PubMed DOI PMC

Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, et al. Pathogen webs in collapsing honey bee colonies. PLoS ONE. 2012;7:e43562. 10.1371/journal.pone.0043562. PubMed DOI PMC

Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol. 2020;3:1–8. 10.1038/s42003-020-0775-x. PubMed DOI PMC

Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé C, et al. Experimental evidence of harmful effects of PubMed DOI

Alcolea PJ, Alonso A, Gómez MJ, Sánchez-Gorostiaga A, Moreno-Paz M, González-Pastor E, et al. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in PubMed DOI PMC

Fahrenholz L, Lamprecht I, Schricker B. Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B. 1989;159:551–60. 10.1007/BF00694379. DOI

Esch H. Über die Körpertemperaturen und Den Wärmehaushalt von DOI

Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A. 2017;114:4775–80. 10.1073/pnas.1701819114. PubMed DOI PMC

Zilberstein D, Shapira M. The role of pH, and temperature in the development of leishmania parasites. Annu Rev Microbiol. 1994;48:449–70. 10.1146/annurev.mi.48.100194.002313. PubMed DOI

Pan AA, Duboise SM, Eperon S, Rivas L, Hodgkinson V, Traub-Cseko Y, et al. Developmental life cycle of PubMed DOI

Markowitz LM, Nearman A, Zhao Z, Boncristiani D, Butenko A, de Pablos LM, et al. Somy evolution in the honey bee infecting trypanosomatid parasite, PubMed DOI PMC

Runckel C, DeRisi J, Flenniken ML. A draft genome of the honey bee trypanosomatid parasite PubMed DOI PMC

Davey JW, Catta-Preta CMC, James S, Forrester S, Motta MCM, Ashton PD, et al. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid PubMed PMC

Soderlund C, Bomhoff M, Nelson WM. SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res. 2011;39:e68. 10.1093/nar/gkr123. PubMed DOI PMC

Shen G, Wang W-L. Circlize package in R and analytic hierarchy process (AHP): contribution values of ABCDE and AGL6 genes in the context of floral organ development. PLoS ONE. 2022;17:e0261232. 10.1371/journal.pone.0261232. PubMed DOI PMC

Brown MR, Manuel G, de La Rosa P, Blaxter M. Tidk: a toolkit to rapidly identify telomeric repeats from genomic datasets. Bioinformatics. 2025;41:btaf049. 10.1093/bioinformatics/btaf049. PubMed DOI PMC

Poláková E, Záhonová K, Albanaz ATS, Butenko A, Lukeš J, Yurchenko V. Diverse telomeres in trypanosomatids. Parasitology. 2021;148:1254–70. 10.1017/S0031182021000378. PubMed DOI PMC

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. 10.1186/s13059-019-1832-y. PubMed DOI PMC

Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. 10.1111/2041-210X.12628. DOI

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R Language. Bioinformatics. 2004;20:289–90. 10.1093/bioinformatics/btg412. PubMed DOI

R Core Team. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.

Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. GlmmTMB balances speed and flexibility among packages for Zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. DOI

Lenth RV. Least-squares means: the R package Lsmeans. J Stat Softw. 2016;69:1–33. 10.18637/jss.v069.i01. DOI

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. Probing mixed-genotype infections i: extraction and cloning of infections from hosts of the trypanosomatid PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. 10.1093/bioinformatics/btt656. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8. PubMed DOI PMC

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. 10.1073/pnas.0506580102. PubMed DOI PMC

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9. 10.1038/75556. PubMed DOI PMC

The Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224:iyad031. 10.1093/genetics/iyad031. PubMed DOI PMC

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62. 10.1093/nar/gkv1070. PubMed DOI PMC

Törönen P, Holm L. PANNZER—a practical tool for protein function prediction. Protein Sci. 2022;31(1):118–28. 10.1002/pro.4193. PubMed DOI PMC

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2:100141. 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Bianca F, Ispano E, Gazzola E, Lavezzo E, Fontana P, Toppo S. FunTaxIS-lite: a simple and light solution to investigate protein functions in all living organisms. Bioinformatics. 2023;39:btad549. 10.1093/bioinformatics/btad549. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. Blastkoala and ghostkoala: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31. 10.1016/j.jmb.2015.11.006. PubMed DOI

Camacho E, González-de la Fuente S, Solana JC, Rastrojo A, Carrasco-Ramiro F, Requena JM, et al. Gene annotation and transcriptome delineation on a PubMed DOI PMC

Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, et al. Cell cycle, telomeres, and telomerase in PubMed DOI PMC

Fu G, Barker DC. Characterisation of PubMed DOI PMC

Martínez-Calvillo S, Romero-Meza G, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela R, Nepomuceno-Mejía T. Epigenetic regulation of transcription in trypanosomatid protozoa. Curr Genomics. 2018;19:140–9. 10.2174/1389202918666170911163517. PubMed DOI PMC

Bringaud F, Rivière L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149:1–9. 10.1016/j.molbiopara.2006.03.017. PubMed DOI

Vannette RL, Mohamed A, Johnson BR. Forager bees ( PubMed DOI PMC

Povelones ML, Holmes NA, Povelones M. A sticky situation: when trypanosomatids attach to insect tissues. PLoS Pathog. 2023;19:e1011854. 10.1371/journal.ppat.1011854. PubMed DOI PMC

Filosa JN, Berry CT, Ruthel G, Beverley SM, Warren WC, Tomlinson C, et al. Dramatic changes in gene expression in different forms of PubMed DOI PMC

Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite PubMed DOI PMC

Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, et al. Analysis of the PubMed DOI PMC

Ouellette M, Légaré D, Haimeur A, Grondin K, Roy G, Brochu C, et al. ABC transporters in PubMed DOI

Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, et al. Chemistry of floral rewards: intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecol Monogr. 2019;89:e01335. 10.1002/ecm.1335. DOI

Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Can floral nectars reduce transmission of PubMed DOI PMC

Johnson RM, Harpur BA, Dogantzis KA, Zayed A, Berenbaum MR. Genomic footprint of evolution of eusociality in bees: floral food use and cypome blooms. Insectes Soc. 2018;65:445–54. 10.1007/s00040-018-0631-x. DOI

Ennes-Vidal V, Menna-Barreto RFS, Santos ALS, Branquinha MH, d’Avila-Levy CM. MDL28170, a calpain inhibitor, affects PubMed DOI PMC

Cunningham AC. Parasitic adaptive mechanisms in infection by PubMed DOI

Mottram JC, Coombs GH, Alexander J. Cysteine peptidases as virulence factors of PubMed DOI

Wang L, Sloan MA, Ligoxygakis P. Intestinal NF-κb and STAT signalling is important for uptake and clearance in a PubMed DOI PMC

Schwarz RS, Evans JD. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev Comp Immunol. 2013;40:300–10. 10.1016/j.dci.2013.03.010. PubMed DOI

Brunner FS, Schmid-Hempel P, Barribeau SM. Immune gene expression in PubMed DOI PMC

Barribeau SM, Sadd BM, du Plessis L, Schmid-Hempel P. Gene expression differences underlying genotype-by-genotype specificity in a host–parasite system. Proc Natl Acad Sci U S A. 2014;111:3496–501. 10.1073/pnas.1318628111. PubMed DOI PMC

Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen PubMed DOI PMC

Yuan X, Sun J, Kadowaki T. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors. 2024;17:60. 10.1186/s13071-024-06126-7. PubMed DOI PMC

Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, Plessis L, du, Schmid-Hempel R, et al. The genomes of PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...