Chromosome-level genome assembly of trypanosomatid parasite Lotmaria passim links chromosome duplication and divergence with infection of honey bees
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2020-67013-31861
National Institute of Food and Agriculture
2020-67013-31861
National Institute of Food and Agriculture
2020-67013-31861
National Institute of Food and Agriculture
Research Grant
Eva Crane Trust
PubMed
41327030
PubMed Central
PMC12667155
DOI
10.1186/s12864-025-12082-y
PII: 10.1186/s12864-025-12082-y
Knihovny.cz E-zdroje
- Klíčová slova
- Crithidia, Aneuploidy, Differential gene expression, Gene duplication, Host-parasite interactions, Phylogenomics, Polycistronic genome organization, Post-transcriptional gene regulation, Trypanosomatid ancestral supernumerary chromosome,
- MeSH
- chromozomy * genetika MeSH
- duplikace genu MeSH
- fylogeneze MeSH
- genom protozoální * MeSH
- molekulární evoluce MeSH
- Trypanosomatina * genetika MeSH
- včely parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The protist family Trypanosomatidae includes parasites of insects, vertebrates, plants, and even other unicellular eukaryotes. The genomes of these species harbor clues to the evolution of parasitism, adaptation to new hosts, and infection of mammals. We present an analysis of a chromosome-level genome assembly of Lotmaria passim, the most prevalent known trypanosomatid of honey bees, linking genome sequence and organization to gene expression and infection of bees. RESULTS: The genome showed a high degree of synteny with assemblies of other trypanosomatids and especially to the closely related Leptomonas pyrrhocoris. It included four copies of chromosomes that shared ancestry with the tetrasomic Leishmania Chromosome 31 and are consistently supernumerary throughout Trypanosomatidae. However, these chromosomes showed lower similarity to L. passim relatives than did the genome overall, with sufficient variation across haplotypes to distinguish two separate disomic chromosomes. Transcriptomic analyses showed that these chromosomes are enriched in genes upregulated during bee infection, and each include five paralogs of the GP63 gene implicated in infection of both insects and mammals. Patterns of expression in bees suggested decreased protein synthesis, a shift from carbohydrate- to amino acid-based metabolism, and reduced cell motility in bee guts versus cell culture. In contrast, genes involved in cell adhesion were upregulated, consistent with the importance of attachment to insect tissue in this species and the family overall. CONCLUSIONS: Our analysis links differentiation of a conserved supernumerary chromosome with infection of bees, parallel to this chromosome's role in Leishmania infection of mammals and linking chromosome-level changes with adaptation to new hosts.
Czech Academy of Sciences Institute of Parasitology České Budějovice 370 05 Czech Republic
Faculty of Science University of South Bohemia České Budějovice 370 05 Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava 710 00 Czech Republic
Zobrazit více v PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. 10.1016/j.pt.2012.11.001. PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–22. 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–80. 10.1016/j.pt.2018.03.002. PubMed DOI
McGwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. QJM Int J Med. 2014;107:7–14. 10.1093/qjmed/hct116. PubMed DOI PMC
Steverding D. The history of leishmaniasis. Parasit Vectors. 2017;10:82. 10.1186/s13071-017-2028-5. PubMed DOI PMC
Steverding D. The history of African trypanosomiasis. Parasit Vectors. 2008;1:3. 10.1186/1756-3305-1-3. PubMed DOI PMC
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al. PubMed DOI PMC
Kostygov AYu, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol. 2024;40:96–9. 10.1016/j.pt.2023.11.009. PubMed DOI
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of PubMed DOI PMC
Jaskowska E, Butler C, Preston G, Kelly S. PubMed DOI PMC
Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9:190072. 10.1098/rsob.190072. PubMed DOI PMC
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. 10.1017/S0031182018000951. PubMed DOI
Albanaz ATS, Gerasimov ES, Shaw JJ, Sádlová J, Lukeš J, Volf P, et al. Genome analysis of PubMed DOI PMC
Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV, Coqueiro-dos-Santos A, Marques CA, Black JA, et al. Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res. 2024;34:441–53. 10.1101/gr.278550.123. PubMed DOI PMC
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, et al. Genomic and transcriptomic alterations in PubMed DOI PMC
Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises PubMed DOI PMC
Mannaert A, Downing T, Imamura H, Dujardin J-C. Adaptive mechanisms in pathogens: universal aneuploidy in PubMed DOI
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. Characterization of two species of Trypanosomatidae from the honey bee PubMed DOI
Sadd BM, Barribeau SM. Heterogeneity in infection outcome: lessons from a bumblebee-trypanosome system. Parasite Immunol. 2013;35:339–49. 10.1111/pim.12043. PubMed DOI
Brown MJF, Schmid-Hempel R, Schmid-Hempel P. Strong context-dependent virulence in a host–parasite system: reconciling genetic evidence with theory. J Anim Ecol. 2003;72:994–1002. 10.1046/j.1365-2656.2003.00770.x. DOI
Brown MJF, Loosli R, Schmid-Hempel P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos. 2000;91:421–7. 10.1034/j.1600-0706.2000.910302.x. DOI
Buendía-Abad M, García-Palencia P, de Pablos LM, Alunda JM, Osuna A, Martín-Hernández R, et al. First description of PubMed DOI
Carreira de Paula J, García Olmedo P, Gómez-Moracho T, Buendía-Abad M, Higes M, Martín-Hernández R, et al. Promastigote EPS secretion and haptomonad biofilm formation as evolutionary adaptations of trypanosomatid parasites for colonizing honeybee hosts. Npj Biofilms Microbiomes. 2024;10:1–11. 10.1038/s41522-024-00492-x. PubMed DOI PMC
Arismendi N, Castro MP, Vargas M, Zapata C, Riveros G. The trypanosome
Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, et al. Comprehensive bee pathogen screening in Belgium reveals PubMed DOI PMC
Stevanovic J, Schwarz RS, Vejnovic B, Evans JD, Irwin RE, Glavinic U, et al. Species-specific diagnostics of PubMed DOI
Morimoto T, Kojima Y, Yoshiyama M, Kimura K, Yang B, Peng G, et al. Molecular detection of protozoan parasites infecting PubMed DOI
Bartolomé C, Buendía-Abad M, Benito M, Sobrino B, Amigo J, Carracedo A, et al. Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation. Sci Rep. 2020;10(1):10454. 10.1038/s41598-020-67183-3. PubMed DOI PMC
Hall RJ, Pragert H, Phiri BJ, Fan Q-H, Li X, Parnell A, et al. Apicultural practice and disease prevalence in DOI
Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, Andino R, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, PubMed DOI PMC
Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, et al. Pathogen webs in collapsing honey bee colonies. PLoS ONE. 2012;7:e43562. 10.1371/journal.pone.0043562. PubMed DOI PMC
Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol. 2020;3:1–8. 10.1038/s42003-020-0775-x. PubMed DOI PMC
Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé C, et al. Experimental evidence of harmful effects of PubMed DOI
Alcolea PJ, Alonso A, Gómez MJ, Sánchez-Gorostiaga A, Moreno-Paz M, González-Pastor E, et al. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in PubMed DOI PMC
Fahrenholz L, Lamprecht I, Schricker B. Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B. 1989;159:551–60. 10.1007/BF00694379. DOI
Esch H. Über die Körpertemperaturen und Den Wärmehaushalt von DOI
Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A. 2017;114:4775–80. 10.1073/pnas.1701819114. PubMed DOI PMC
Zilberstein D, Shapira M. The role of pH, and temperature in the development of leishmania parasites. Annu Rev Microbiol. 1994;48:449–70. 10.1146/annurev.mi.48.100194.002313. PubMed DOI
Pan AA, Duboise SM, Eperon S, Rivas L, Hodgkinson V, Traub-Cseko Y, et al. Developmental life cycle of PubMed DOI
Markowitz LM, Nearman A, Zhao Z, Boncristiani D, Butenko A, de Pablos LM, et al. Somy evolution in the honey bee infecting trypanosomatid parasite, PubMed DOI PMC
Runckel C, DeRisi J, Flenniken ML. A draft genome of the honey bee trypanosomatid parasite PubMed DOI PMC
Davey JW, Catta-Preta CMC, James S, Forrester S, Motta MCM, Ashton PD, et al. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid PubMed PMC
Soderlund C, Bomhoff M, Nelson WM. SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res. 2011;39:e68. 10.1093/nar/gkr123. PubMed DOI PMC
Shen G, Wang W-L. Circlize package in R and analytic hierarchy process (AHP): contribution values of ABCDE and AGL6 genes in the context of floral organ development. PLoS ONE. 2022;17:e0261232. 10.1371/journal.pone.0261232. PubMed DOI PMC
Brown MR, Manuel G, de La Rosa P, Blaxter M. Tidk: a toolkit to rapidly identify telomeric repeats from genomic datasets. Bioinformatics. 2025;41:btaf049. 10.1093/bioinformatics/btaf049. PubMed DOI PMC
Poláková E, Záhonová K, Albanaz ATS, Butenko A, Lukeš J, Yurchenko V. Diverse telomeres in trypanosomatids. Parasitology. 2021;148:1254–70. 10.1017/S0031182021000378. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. 10.1186/s13059-019-1832-y. PubMed DOI PMC
Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. 10.1111/2041-210X.12628. DOI
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R Language. Bioinformatics. 2004;20:289–90. 10.1093/bioinformatics/btg412. PubMed DOI
R Core Team. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. GlmmTMB balances speed and flexibility among packages for Zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. DOI
Lenth RV. Least-squares means: the R package Lsmeans. J Stat Softw. 2016;69:1–33. 10.18637/jss.v069.i01. DOI
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. Probing mixed-genotype infections i: extraction and cloning of infections from hosts of the trypanosomatid PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. 10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. 10.1073/pnas.0506580102. PubMed DOI PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9. 10.1038/75556. PubMed DOI PMC
The Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224:iyad031. 10.1093/genetics/iyad031. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62. 10.1093/nar/gkv1070. PubMed DOI PMC
Törönen P, Holm L. PANNZER—a practical tool for protein function prediction. Protein Sci. 2022;31(1):118–28. 10.1002/pro.4193. PubMed DOI PMC
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2:100141. 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Bianca F, Ispano E, Gazzola E, Lavezzo E, Fontana P, Toppo S. FunTaxIS-lite: a simple and light solution to investigate protein functions in all living organisms. Bioinformatics. 2023;39:btad549. 10.1093/bioinformatics/btad549. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. Blastkoala and ghostkoala: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31. 10.1016/j.jmb.2015.11.006. PubMed DOI
Camacho E, González-de la Fuente S, Solana JC, Rastrojo A, Carrasco-Ramiro F, Requena JM, et al. Gene annotation and transcriptome delineation on a PubMed DOI PMC
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, et al. Cell cycle, telomeres, and telomerase in PubMed DOI PMC
Fu G, Barker DC. Characterisation of PubMed DOI PMC
Martínez-Calvillo S, Romero-Meza G, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela R, Nepomuceno-Mejía T. Epigenetic regulation of transcription in trypanosomatid protozoa. Curr Genomics. 2018;19:140–9. 10.2174/1389202918666170911163517. PubMed DOI PMC
Bringaud F, Rivière L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149:1–9. 10.1016/j.molbiopara.2006.03.017. PubMed DOI
Vannette RL, Mohamed A, Johnson BR. Forager bees ( PubMed DOI PMC
Povelones ML, Holmes NA, Povelones M. A sticky situation: when trypanosomatids attach to insect tissues. PLoS Pathog. 2023;19:e1011854. 10.1371/journal.ppat.1011854. PubMed DOI PMC
Filosa JN, Berry CT, Ruthel G, Beverley SM, Warren WC, Tomlinson C, et al. Dramatic changes in gene expression in different forms of PubMed DOI PMC
Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite PubMed DOI PMC
Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, et al. Analysis of the PubMed DOI PMC
Ouellette M, Légaré D, Haimeur A, Grondin K, Roy G, Brochu C, et al. ABC transporters in PubMed DOI
Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, et al. Chemistry of floral rewards: intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecol Monogr. 2019;89:e01335. 10.1002/ecm.1335. DOI
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Can floral nectars reduce transmission of PubMed DOI PMC
Johnson RM, Harpur BA, Dogantzis KA, Zayed A, Berenbaum MR. Genomic footprint of evolution of eusociality in bees: floral food use and cypome blooms. Insectes Soc. 2018;65:445–54. 10.1007/s00040-018-0631-x. DOI
Ennes-Vidal V, Menna-Barreto RFS, Santos ALS, Branquinha MH, d’Avila-Levy CM. MDL28170, a calpain inhibitor, affects PubMed DOI PMC
Cunningham AC. Parasitic adaptive mechanisms in infection by PubMed DOI
Mottram JC, Coombs GH, Alexander J. Cysteine peptidases as virulence factors of PubMed DOI
Wang L, Sloan MA, Ligoxygakis P. Intestinal NF-κb and STAT signalling is important for uptake and clearance in a PubMed DOI PMC
Schwarz RS, Evans JD. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev Comp Immunol. 2013;40:300–10. 10.1016/j.dci.2013.03.010. PubMed DOI
Brunner FS, Schmid-Hempel P, Barribeau SM. Immune gene expression in PubMed DOI PMC
Barribeau SM, Sadd BM, du Plessis L, Schmid-Hempel P. Gene expression differences underlying genotype-by-genotype specificity in a host–parasite system. Proc Natl Acad Sci U S A. 2014;111:3496–501. 10.1073/pnas.1318628111. PubMed DOI PMC
Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen PubMed DOI PMC
Yuan X, Sun J, Kadowaki T. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors. 2024;17:60. 10.1186/s13071-024-06126-7. PubMed DOI PMC
Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, Plessis L, du, Schmid-Hempel R, et al. The genomes of PubMed DOI PMC