Quantifying the success of prey crypsis, aposematism, and evasiveness in avoiding predator attack
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
GJ20-18566Y
Grantová Agentura České Republiky
RR 05557-R-22 (Project B22100321)
Universidad Nacional Mayor de San Marcos
L20096195
PPLZ program of the Czech Academy of Sciences
n.014/2022/P
Grantová Agentura Jihočeské Univerzity
PubMed
41260231
PubMed Central
PMC12629670
DOI
10.1002/ecy.70248
Knihovny.cz E-zdroje
- Klíčová slova
- antipredator defenses, behavioral experiments, butterfly, insectivorous birds, predation sequence, predator–prey interaction,
- MeSH
- motýli * fyziologie MeSH
- potravní řetězec * MeSH
- predátorské chování * fyziologie MeSH
- ptáci * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Peru MeSH
Antipredator defenses typically act at distinct stages of the predation sequence-encounter, identification, approach, and subjugation. However, their effectiveness has rarely been quantified and compared simultaneously in wild predator-prey systems. We conducted a study in Peru, where we installed aviaries at two localities and recorded the responses of wild avian predators to three types of antipredator defenses-crypsis, aposematism, and evasiveness-expressed by three butterfly prey types. The study included both immature and adult birds from forest and urban environments, representing the present community of insectivorous birds. We tested the theoretical expectations that cryptic butterflies (Nymphalidae: Euptychiina) were rarely detected, aposematic Heliconius (Nymphalidae: Heliconiinae) were often sighted but seldom attacked, and evasive Spicauda (Hesperiidae: Eudaminae) were frequently detected and attacked but evaded capture at higher rates. Despite these distinct defensive strategies, mortality rates among prey types were largely similar, but predator life stage strongly influenced defense effectiveness, with immature birds tending to attack Heliconius more frequently. Additionally, predator family influenced predation patterns, with more skilled insectivores (e.g., Vireonidae) showing higher capture success against defended prey. These findings illuminate the evolutionary pressures that shape predator behavior and prey defenses in tropical ecosystems. The similar mortality rates underscore the adaptive value of these defenses, which collectively distribute the total predation pressure across prey species.
Biology Centre CAS Institute of Entomology České Budějovice Czechia
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czechia
Independent Researcher Lima Peru
Instituto de Investigación Biológica de las Cordilleras Orientales Tarapoto Peru
Zobrazit více v PubMed
Arias, M. , Mappes J., Théry M., and Llaurens V.. 2016. “Inter‐Species Variation in Unpalatability Does Not Explain Polymorphism in a Mimetic Species.” Evolutionary Ecology 30(3): 419–433. 10.1007/s10682-015-9815-2. DOI
Bates, D. , Mächler M., Bolker B., and Walker S.. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67: 1–48. 10.18637/jss.v067.i01. DOI
Burd, M. 1994. “Butterfly Wing Colour Patterns and Flying Heights in the Seasonally Wet Forest of Barro Colorado Island, Panama.” Journal of Tropical Ecology 10(4): 601–610. 10.1017/S0266467400008270. DOI
Burnham, K. P. , and Anderson D. R.. 2002. Model Selection and Inference: A Practical Information‐Theoretic Approach. New York, NY: Springer Science & Business Media.
Chai, P. 1986. “Field Observations and Feeding Experiments on the Responses of Rufous‐Tailed Jacamars (Galbula Ruficauda) to Free‐Flying Butterflies in a Tropical Rainforest.” Biological Journal of the Linnean Society 29(3): 161–189. 10.1111/j.1095-8312.1986.tb01772.x. DOI
Chang, C. , and Todd P. A.. 2023. “Reduced Predation Pressure as a Potential Driver of Prey Diversity and Abundance in Complex Habitats.” npj Biodiversity 2(1): 1–5. 10.1038/s44185-022-00007-x. PubMed DOI PMC
Chotard, A. , Ledamoisel J., Decamps T., Herrel A., Chaine A. S., Llaurens V., and Debat V.. 2022. “Evidence of Attack Deflection Suggests Adaptive Evolution of Wing Tails in Butterflies.” Proceedings of the Royal Society B: Biological Sciences 289(1975): 20220562. 10.1098/rspb.2022.0562. PubMed DOI PMC
Chouteau, M. , Arias M., and Joron M.. 2016. “Warning Signals Are under Positive Frequency‐Dependent Selection in Nature.” Proceedings of the National Academy of Sciences 113(8): 2164–2169. 10.1073/pnas.1519216113. PubMed DOI PMC
Chouteau, M. , Dezeure J., Sherratt T. N., Llaurens V., and Joron M.. 2019. “Similar Predator Aversion for Natural Prey with Diverse Toxicity Levels.” Animal Behaviour 153: 49–59. 10.1016/j.anbehav.2019.04.017. DOI
Dell'aglio, D. D. , Stevens M., and Jiggins C. D.. 2016. “Avoidance of an Aposematically Coloured Butterfly by Wild Birds in a Tropical Forest.” Ecological Entomology 41(5): 627–632. 10.1111/een.12335. PubMed DOI PMC
Egg, A. B. , Parker T. A., O'Neill J. P., Lane D. F., Stotz D. F., and Schulenberg T. S.. 2010. Birds of Peru: Revised and Updated Edition. Princeton, NJ: Princeton University Press. https://muse.jhu.edu/pub/267/monograph/book/30246.
Endler, J. A. 1991. “Interactions Between Predators and Prey.” In Behavioural Scology: An Evolutionary Approach, 3rd ed., edited by Krebs J. R. and Davies N. B., 169–196. Oxford: Blackwell.
Feltmate, B. W. , and Williams D. D.. 1989. “A Test of Crypsis and Predator Avoidance in the Stonefly Paragnetina Media (Plecoptera: Perlidae).” Animal Behaviour 37: 992–999. 10.1016/0003-3472(89)90143-7. DOI
Finkbeiner, S. D. , Briscoe A. D., and Reed R. D.. 2014. “Warning Signals Are Seductive: Relative Contributions of Color and Pattern to Predator Avoidance and Mate Attraction in Heliconius Butterflies.” Evolution 68(12): 3410–3420. 10.1111/evo.12524. PubMed DOI
Gibson, D. O. 1974. “Batesian Mimicry without Distastefulness?” Nature 250(5461): 77–79. 10.1038/250077a0. PubMed DOI
Gibson, D. O. 1980. “The Role of Escape in Mimicry and Polymorphism: I. The Response of Captive Birds to Artificial Prey.” Biological Journal of the Linnean Society 14(2): 201–214. 10.1111/j.1095-8312.1980.tb00105.x. DOI
Guerra, T. J. , Braga R. F., Camarota F., Neves F. S., and Fernandes G. W.. 2024. “Avian Predators Avoid Attacking Fly‐Mimicking Beetles: A Field Experiment on Evasive Mimicry Using Artificial Prey.” The American Naturalist 204(1): 96–104. 10.1086/730263. PubMed DOI
Hansen, B. T. , Holen Ø. H., and Mappes J.. 2010. “Predators Use Environmental Cues to Discriminate between Prey.” Behavioral Ecology and Sociobiology 64(12): 1991–1997. 10.1007/s00265-010-1010-4. DOI
Hernandez Mejia, J. , Eche Navarro V. N. P., Linke D., Ramírez García C., Salinas Sánchez L., and Matos‐Maraví P.. 2025. Birds of Urahuasha Protected Area, Vol. 1737, 24. Chicago, Illinois, USA: Field Guides, Field Museum.
Janzen, D. H. , Hallwachs W., Blandin P., Burns J. M., Cadiou J.‐M., Chacon I., Dapkey T., et al. 2009. “Integration of DNA Barcoding into an Ongoing Inventory of Complex Tropical Biodiversity.” Molecular Ecology Resources 9(s1): 1–26. 10.1111/j.1755-0998.2009.02628.x. PubMed DOI
Kikuchi, D. W. , Allen W. L., Arbuckle K., Aubier T. G., Briolat E. S., Burdfield‐Steel E. R., Cheney K. L., et al. 2023. “The Evolution and Ecology of Multiple Antipredator Defences.” Journal of Evolutionary Biology 36: 975–991. 10.1111/jeb.14192. PubMed DOI
Langham, G. M. 2006. “Rufous‐Tailed Jacamars and Aposematic Butterflies: Do Older Birds Attack Novel Prey?” Behavioral Ecology 17(2): 285–290. 10.1093/beheco/arj027. DOI
Le Roy, C. , Debat V., and Llaurens V.. 2019. “Adaptive Evolution of Butterfly Wing Shape: From Morphology to Behaviour.” Biological Reviews 94(4): 1261–1281. 10.1111/brv.12500. PubMed DOI
Lenth, R. 2025. “emmeans: Estimated Marginal Means, aka Least‐Squares Means. (Version 1.11.1‐00001) [Computer software].” https://rvlenth.github.io/emmeans/
Linke, D. 2025. “Quantifying the Success of Prey Crypsis, Aposematism and Evasiveness in Avoiding Predators Attack.” Zenodo. 10.5281/zenodo.17054629 PubMed DOI
Linke, D. , Elias M., Klečková I., Mappes J., and Matos‐Maraví P.. 2022. “Shape of Evasive Prey Can Be an Important Cue that Triggers Learning in Avian Predators.” Frontiers in Ecology and Evolution 10: 910695. 10.3389/fevo.2022.910695. DOI
Linke, D. , Hernandez Mejia J., N. P. Eche Navarro V., Salinas Sánchez L., de Gusmão Ribeiro P., Elias M., and Matos‐Maraví P.. 2024. “Reduced Palatability, Fast Flight, and Tails: Decoding the Defence Arsenal of Eudaminae Skipper Butterflies in a Neotropical Locality.” Journal of Evolutionary Biology 37: voae091. 10.1093/jeb/voae091. PubMed DOI
Loeffler‐Henry, K. , and Sherratt T. N.. 2024. “Selection for Evasive Mimicry Imposed by an Arthropod Predator.” Biology Letters 20(1): 20230461. 10.1098/rsbl.2023.0461. PubMed DOI PMC
Mallet, J. , and Gilbert L.. 1995. “Why Are there So Many Mimicry Rings? Correlations between Habitat, Behaviour and Mimicry in Heliconius Butterflies.” Biological Journal of the Linnean Society 55(2): 159–180. 10.1111/j.1095-8312.1995.tb01057.x. DOI
Mappes, J. , Kokko H., Ojala K., and Lindström L.. 2014. “Seasonal Changes in Predator Community Switch the Direction of Selection for Prey Defences.” Nature Communications 5(1): Article 1. 10.1038/ncomms6016. PubMed DOI PMC
Mérot, C. , Frérot B., Leppik E., and Joron M.. 2015. “Beyond Magic Traits: Multimodal Mating Cues in Heliconius Butterflies.” Evolution 69(11): 2891–2904. 10.1111/evo.12789. PubMed DOI
Merrill, R. M. , Wallbank R. W. R., Bull V., Salazar P. C. A., Mallet J., Stevens M., and Jiggins C. D.. 2012. “Disruptive Ecological Selection on a Mating Cue.” Proceedings of the Royal Society B: Biological Sciences 279(1749): 4907–4913. 10.1098/rspb.2012.1968. PubMed DOI PMC
Molleman, F. , Javoiš J., Davis R. B., Whitaker M. R. L., Tammaru T., Prinzing A., Õunap E., et al. 2020. “Quantifying the Effects of Species Traits on Predation Risk in Nature: A Comparative Study of Butterfly Wing Damage.” Journal of Animal Ecology 89(3): 716–729. 10.1111/1365-2656.13139. PubMed DOI
Navarro, V. , Hernández Mejía J., Linke D., Salinas L., and Matos‐Maraví P.. 2023. “ DOI
Páez, E. , Valkonen J. K., Willmott K. R., Matos‐Maraví P., Elias M., and Mappes J.. 2021. “Hard to Catch: Experimental Evidence Supports Evasive Mimicry.” Proceedings of the Royal Society B: Biological Sciences 288(1946): 20203052. 10.1098/rspb.2020.3052. PubMed DOI PMC
Pembury Smith, M. Q. R. , and Ruxton G. D.. 2021. “Size‐Dependent Predation Risk in Cryptic Prey.” Journal of Ethology 39(2): 191–198. 10.1007/s10164-021-00691-5. DOI
Pinheiro, C. E. G. , and Campos V. C.. 2019. “The Responses of Wild Jacamars (Galbula Ruficauda, Galbulidae) to Aposematic, Aposematic and Cryptic, and Cryptic Butterflies in Central Brazil.” Ecological Entomology 44(4): 441–450. 10.1111/een.12723. DOI
Pinheiro, C. E. G. , and Cintra R.. 2017. “Butterfly Predators in the Neotropics: Which Birds Are Involved?” Journal of the Lepidopterists' Society 71: 109–114. 10.18473/lepi.71i2.a5. DOI
Pinheiro, C. E. G. , and Freitas A. V. L.. 2014. “Some Possible Cases of Escape Mimicry in Neotropical Butterflies.” Neotropical Entomology 43(5): 393–398. 10.1007/s13744-014-0240-y. PubMed DOI
R Core Team . 2023. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
Ruxton, G. D. , Allen W. L., Sherratt T. N., and Speed M. P.. 2018. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry, 2nd ed. Oxford: Oxford University Press. 10.1093/oso/9780199688678.001.0001. DOI
Ruxton, G. D. , Speed M., and Sherratt T. N.. 2004. “Evasive Mimicry: When (if Ever) Could Mimicry Based on Difficulty of Capture Evolve?” Proceedings. Biological sciences 271(1553): 2135–2142. 10.1098/rspb.2004.2816. PubMed DOI PMC
Seymoure, B. M. , Raymundo A., McGraw K. J., Owen McMillan W., and Rutowski R. L.. 2018. “Environment‐Dependent Attack Rates of Cryptic and Aposematic Butterflies.” Current Zoology 64(5): 663–669. 10.1093/cz/zox062. PubMed DOI PMC
Skelhorn, J. , and Rowe C.. 2006. “Prey Palatability Influences Predator Learning and Memory.” Animal Behaviour 71(5): 1111–1118. 10.1016/j.anbehav.2005.08.011. DOI
Srygley, R. B. , and Chai P.. 1990. “Predation and the Elevation of Thoracic Temperature in Brightly Colored Neotropical Butterflies.” The American Naturalist 135(6): 766–787.
Stevens, M. , and Merilaita S.. 2009. “Animal Camouflage: Current Issues and New Perspectives.” Philosophical Transactions of the Royal Society B: Biological Sciences 364(1516): 423–427. 10.1098/rstb.2008.0217. PubMed DOI PMC
Stouffer, P. , Johnson E., and Bierregaard R.. 2013. “Breeding Seasonality in Central Amazonian Rainforest Birds.” The Auk 130: 529–540. 10.1525/auk.2013.12179. DOI
Vallin, A. , Jakobsson S., Lind J., and Wiklund C.. 2006. “Crypsis Versus Intimidation—Anti‐Predation Defence in Three Closely Related Butterflies.” Behavioral Ecology and Sociobiology 59(3): 455–459. 10.1007/s00265-005-0069-9. DOI
Veselý, P. , Ernestová B., Nedvěd O., and Fuchs R.. 2017. “Do Predator Energy Demands or Previous Exposure Influence Protection by Aposematic Coloration of Prey?” Current Zoology 63(3): 259–267. 10.1093/cz/zow057. PubMed DOI PMC
Wickham, H. 2016. Ggplot2. Cham: Springer International Publishing. 10.1007/978-3-319-24277-4. DOI
Willmott, K. R. , Robinson Willmott J. C., Elias M., and Jiggins C. D.. 2017. “Maintaining Mimicry Diversity: Optimal Warning Colour Patterns Differ among Microhabitats in Amazonian Clearwing Butterflies.” Proceedings. Biological sciences 284(1855): 20170744. 10.1098/rspb.2017.0744. PubMed DOI PMC
Wunderle, J. 1991. “Age‐Specific Foraging Proficiency in Birds.” Current Ornithology 8: 273–324.
Zvereva, E. L. , and Kozlov M. V.. 2021. “Seasonal Variations in Bird Selection Pressure on Prey Colouration.” Oecologia 196(4): 1017–1026. 10.1007/s00442-021-04994-9. PubMed DOI PMC
Quantifying the success of prey crypsis, aposematism, and evasiveness in avoiding predator attack