Hard to catch: experimental evidence supports evasive mimicry
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33715434
PubMed Central
PMC7944090
DOI
10.1098/rspb.2020.3052
Knihovny.cz E-zdroje
- Klíčová slova
- Adelpha, convergence, distastefulness, evasive aposematism, predator learning, prey defence,
- MeSH
- biologická evoluce MeSH
- biologické modely MeSH
- křídla zvířecí MeSH
- mimikry * MeSH
- motýli * MeSH
- predátorské chování MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most research on aposematism has focused on chemically defended prey, but the signalling difficulty of capture remains poorly explored. Similar to classical Batesian and Müllerian mimicry related to distastefulness, such 'evasive aposematism' may also lead to convergence in warning colours, known as evasive mimicry. A prime candidate group for evasive mimicry are Adelpha butterflies, which are agile insects and show remarkable colour pattern convergence. We tested the ability of naive blue tits to learn to avoid and generalize Adelpha wing patterns associated with the difficulty of capture and compared their response to that of birds that learned to associate the same wing patterns with distastefulness. Birds learned to avoid all wing patterns tested and generalized their aversion to other prey to some extent, but learning was faster with evasive prey compared to distasteful prey. Our results on generalization agree with longstanding observations of striking convergence in wing colour patterns among Adelpha species, since, in our experiments, perfect mimics of evasive and distasteful models were always protected during generalization and suffered the lowest attack rate. Moreover, generalization on evasive prey was broader compared to that on distasteful prey. Our results suggest that being hard to catch may deter predators at least as effectively as distastefulness. This study provides empirical evidence for evasive mimicry, a potentially widespread but poorly understood form of morphological convergence driven by predator selection.
Biology Centre CAS Institute of Entomology Branišovská 31 České Budějovice Czech Republic
Department of Biological and Environmental Science University of Jyväskylä Finland
Zobrazit více v PubMed
Poulton EB. 1890. The colours of animals: their meaning and use. Especially considered in the case of insects. The international scientific series, 2nd edn. London, UK: Kegan Paul, Trench Trübner, & Co.
Cott HB. 1940. Adaptive coloration in animals. London, UK: Methuen.
Mappes J, Marples N, Endler JA. 2005. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598-603. ( 10.1016/j.tree.2005.07.011) PubMed DOI
Exnerová A, Štys P, Fučíková E, Veselá S, Svádová K, Prokopová M, Jarošík V, Fuchs R, Landová E. 2006. Avoidance of aposematic prey in European tits (Paridae): learned or innate? Behav. Ecol. 18, 148-156. ( 10.1093/beheco/arl061) DOI
Skelhorn J, Halpin CG, Rowe C. 2016. Learning about aposematic prey. Behav. Ecol. 27, 955-964. ( 10.1093/beheco/arw009) DOI
Ruxton GD, Allen WL, Sherratt TN, Speed MP. 2018. Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford, UK: Oxford University Press.
Muller F. 1879.
Symula R, Schulte R, Summers K. 2001. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc. R. Soc. Lond. B 268, 2415-2421. ( 10.1098/rspb.2001.1812) PubMed DOI PMC
Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. 2007. Experimental evidence for aposematism in the dendrobatid poison frog DOI
Marek PE, Bond JE. 2009. A Mullerian mimicry ring in Appalachian millipedes. Proc. Natl Acad. Sci. USA 106, 9755-9760. ( 10.1073/pnas.0810408106) PubMed DOI PMC
Wilson JS, Jahner JP, Forister ML, Sheehan ES, Williams KA, Pitts JP. 2015. North American velvet ants form one of the world's largest known Müllerian mimicry complexes. Curr. Biol. 25, R704-R706. ( 10.1016/j.cub.2015.06.053) PubMed DOI
DeVries PJ. 1987. The butterflies of costa rica and their natural history. Vol. I: Papilionidae, Pieridae, Nymphalidae. Princeton, NJ: Princeton University Press.
Brown KS. 1988. Mimicry, aposematism and crypsis in neotropical Lepidoptera: the importance of dual signals. Bull. Soc. Zool. Fr. 113, 83-101
Beccaloni GW. 1997. Ecology, natural history and behaviour of Ithomiine butterflies and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiine). Trop. Lepid. 8, 103-124.
Mallet J, Mcmillan WO, Jiggins CD. 1988. Mimicry and warning colour at the boundary between races and species. In Endless forms: species and speciation (eds Howard DJ, Berlocher SH), pp. 390-403. New York, NY: Oxford University Press
Willmott KR, Robinson Willmott JC, Elias M, Jiggins CD. 2017. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B 284, 20170744. ( 10.1098/rspb.2017.0744) PubMed DOI PMC
Pinheiro CEG, Freitas AVL, Campos VC, DeVries PJ, Penz CM. 2016. Both palatable and unpalatable butterflies use bright colors to signal difficulty of capture to predators. Neotrop. Entomol. 45, 107-113. ( 10.1007/s13744-015-0359-5) PubMed DOI
Guerra TJ. 2019. Evasive mimicry: too beetle, or not too beetle? Ecology 100, e02773. ( 10.1002/ecy.2773) PubMed DOI
Ruxton GD, Speed M, Sherratt TN. 2004. Evasive mimicry: when (if ever) could mimicry based on difficulty of capture evolve? Proc. R. Soc. Lond. B 271, 2135-2142. ( 10.1098/rspb.2004.2816) PubMed DOI PMC
Hasson O. 1991. Pursuit-deterrent signals: communication between prey and predator. Trends Ecol. Evol. 6, 325-329. ( 10.1016/0169-5347(91)90040-5) PubMed DOI
Srygley RB. 1999. Incorporating motion into investigations of mimicry. Evol. Ecol. 13, 691-708. ( 10.1023/A:1011046202928) DOI
Cyriac VP, Kodandaramaiah U. 2019. Don't waste your time: predators avoid prey with conspicuous colors that signal long handling time. Evol. Ecol. 33, 625-636. ( 10.1007/s10682-019-09998-9) DOI
Brower JV. 1958. Experimental studies of mimicry in some North American butterflies. 1. The monarch, DOI
van Someren VGL, Jackson THE. 1959. Some comments on protective resemblance amongst African lepidoptera (Rhopalocera). J. Lepidopterists' Soc. 13, 121-150.
Pinheiro CEG. 1996. Palatability and escaping ability in Neotropical butterflies: tests with wild kingbirds ( DOI
Pinheiro CEG, Freitas AVL. 2014. Some possible cases of escape mimicry in neotropical butterflies. Neotrop. Entomol. 43, 393-398. ( 10.1007/s13744-014-0240-y) PubMed DOI
Pinheiro CEG, Campos VC. 2019. The responses of wild jacamars ( DOI
Gibson DO. 1974. Batesian mimicry without distastefulness? Nature 250, 77-79. ( 10.1038/250077a0) PubMed DOI
Gibson, DO. 1980. The role of escape in mimicry and polymorphism: I. The response of captive birds to artificial prey. Biol. J. Linn. Soc. 14, 201-214. ( 10.1111/j.1095-8312.1980.tb00105.x) DOI
Hancox AP, Allen JA. 1991. A simulation of evasive mimicry in the wild. J. Zool. 223, 9-13. ( 10.1111/j.1469-7998.1991.tb04745.x) DOI
Willmott KR. 2003. The genus
Willmott KR. 2003. Cladistic analysis of the Neotropical butterfly genus DOI
Ebel ER, DaCosta JM, Sorenson MD, Hill RI, Briscoe AD, Willmott KR, Mullen SP. 2015. Rapid diversification associated with ecological specialization in Neotropical PubMed DOI
Aiello A. 1984. DOI
Finkbeiner SD, Salazar PA, Nogales S, Rush CE, Briscoe AD, Hill RI, Kronforst MR, Willmott KR, Mullen SP. 2018. Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proc. R. Soc. B 285, 20172786. ( 10.1098/rspb.2017.2786) PubMed DOI PMC
Hill RI, Mullen SP. 2019. Adult feeding as a potential mechanism for unprofitability in neotropical DOI
Chai P, Srygley RB. 1990. Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. Am. Nat. 135, 748-765. ( 10.1086/285072) DOI
Finkbeiner SD, Briscoe AD, Mullen SP. 2017. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution 71, 949-959. ( 10.1111/evo.13165) PubMed DOI
Srygley RB, Dudley R. 1993. Correlations of the position of center of body mass with butterfly escape tactics. J. Exp. Biol. 174,155-166.
Mallet J, Singer MC. 1987. Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biol. J. Linn. Soc. 32, 337-350. ( 10.1111/j.1095-8312.1987.tb00435.x) DOI
Mullen SP, Savage WK, Wahlberg N, Willmott KR. 2011. Rapid diversification and not clade age explains high diversity in neotropical PubMed DOI PMC
Kikuchi DW, Mappes J, Sherratt TN, Valkonen JK. 2016. Selection for multicomponent mimicry: equal feature salience and variation in preferred traits. Behav. Ecol. 27, 1515-1521. ( 10.1093/beheco/arw072) DOI
Rönkä K, De Pasqual C, Mappes J, Gordon S, Rojas B.. 2018. Colour alone matters: no predator generalization among morphs of an aposematic moth. Anim. Behav. 135, 153-163. ( 10.1016/j.anbehav.2017.11.015) DOI
Rojas B, Mappes J, Burdfield-Steel E. 2019. Multiple modalities in insect warning displays have additive effects against wild avian predators. Behav. Ecol. Sociobiol. 73, 37. ( 10.1007/s00265-019-2643-6) DOI
Hart NS, Partridge JC, Cuthill IC, Bennett ATD. 2000. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit ( PubMed DOI
Hart NS, Vorobyev M. 2005. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J. Comp. Physiol. A. 191, 381-392. ( 10.1007/s00359-004-0595-3) PubMed DOI
Smith HG. 1987. Intraspecific variation in migratory pattern of a partial migrant, the blue tit ( DOI
Hämäläinen L, Mappes J, Rowland HM, Teichmann M, Thorogood R. 2020. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 89, 1153-1164. ( 10.1111/1365-2656.13180) PubMed DOI PMC
Ihalainen E, Rowland HM, Speed MP, Ruxton GD, Mappes J. 2012. Prey community structure affects how predators select for Müllerian mimicry. Proc. R. Soc. B 279, 2099-2105. ( 10.1098/rspb.2011.2360) PubMed DOI PMC
Mérot C, Frérot B, Leppik E, Joron M. 2015. Beyond magic traits: multimodal mating cues in PubMed DOI
Lindroth CH. 1971. Disappearance as a protective factor. A supposed case of Batesian mimicry among beetles (Coleoptera: Carabidae and Chrysomelidae). Ent. scand. 2, 41-48. ( 10.1163/187631271X00031) DOI
Holm E, Kirsten JF. 1979. Pre-adaptation and speed mimicry among Namib Desert scarabaeids with orange elytra. J. Arid. Environ. 2, 263-271. ( 10.1016/S0140-1963(18)31776-2) DOI
Srygley RB. 1994. Locomotor mimicry in butterflies? The associations of positions of centres of mass among groups of mimetic, unprofitable prey. Phil. Trans. R. Soc. Lond. B 343, 145-155. ( 10.1098/rstb.1994.0017) DOI
Ham AD, Ihalainen E, Lindström L, Mappes J. 2006. Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behav. Ecol. Sociobiol. 60, 482-491. ( 10.1007/s00265-006-0190-4) DOI
Lindstrom L, Alatalo RV, Mappes J. 1999. Reactions of hand-reared and wild-caught predators toward warningly colored, gregarious, and conspicuous prey. Behav. Ecol. 10, 317-322. ( 10.1093/beheco/10.3.317) DOI
Aronsson M, Gamberale-Stille G. 2008. Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Anim. Behav. 75, 417-423. ( 10.1016/j.anbehav.2007.05.006) DOI
Chittka L, Osorio D. 2007. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339. ( 10.1371/journal.pbio.0050339) PubMed DOI PMC
Arias M, le Poul Y, Chouteau M, Boisseau R, Rosser N, Théry M, Llaurens V. 2016. Crossing fitness valleys: empirical estimation of a fitness landscape associated with polymorphic mimicry. Proc. R. Soc. B 283, 20160391. ( 10.1098/rspb.2016.0391) PubMed DOI PMC
Finkbeiner SD, Briscoe AD, Reed RD. 2014. Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in PubMed DOI
Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O. 2014. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965-969. ( 10.1016/j.cub.2014.02.061) PubMed DOI
Hetz M, Slobodchikoff CN. 1988. Predation pressure on an imperfect Batesian mimicry complex in the presence of alternative prey. Oecologia 76, 570-573. ( 10.1007/BF00397872) PubMed DOI
Beatty CD, Beirinckx K, Sherratt TN. 2004. The evolution of müllerian mimicry in multispecies communities. Nature 431, 63-66. ( 10.1038/nature02818) PubMed DOI
Arias M, Mappes J, Théry M, Llaurens V. 2015. Inter-species variation in unpalatability does not explain polymorphism in a mimetic species. Evol. Ecol. 30, 419-433. ( 10.1007/s10682-015-9815-2) DOI
Muñoz AP, Kéry M, Martins PV, Ferraz G. 2018. Age effects on survival of Amazon forest birds and the latitudinal gradient in bird survival. The Auk 135, 299-313. ( 10.1642/auk-17-91.1) DOI
Rönkä K, Valkonen JK, Nokelainen O, Rojas B, Gordon S, Burdfield-Steel E, Mappes J. 2020. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654-1663. ( 10.1111/ele.13597) PubMed DOI
Ritland DB. 1995. Comparative unpalatability of mimetic viceroy butterflies ( PubMed DOI
Brower LP, Ryerson W, Coppinger L, Glazier S. 1968. Ecological chemistry and the palatability spectrum. Science 161, 1349-1351. ( 10.1126/science.161.3848.1349) PubMed DOI
Pinheiro CEG. 2003. Does Müllerian mimicry work in nature? Experiments with butterflies and birds (Tyrannidae). Biotropica. 35, 356-364.
Terhune EC. 1977. Components of a visual stimulus used by scrub jays to discriminate a Batesian model. Am. Nat. 111, 435-451. ( 10.1086/283178) DOI
Endler JA, Mappes J. 2004. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 163, 532-547. ( 10.1086/382662) PubMed DOI
Hämäläinen L, Mappes J, Rowland HM, Thorogood R. 2019. Social information use about novel aposematic prey is not influenced by a predator's previous experience with toxins. Funct. Ecol. 33, 1982-1992. ( 10.1111/1365-2435.13395) DOI
Duncan CJ, Sheppard PM. 1965. Sensory discrimination and its role in the evolution of Batesian mimicry. Behaviour 24, 269-282. ( 10.1163/156853965X00066) PubMed DOI
Goodale MA, Sneddon I. 1977. The effect of distastefulness of the model on the predation of artificial Batesian mimics. Anim. Behav. 25, 660-665. ( 10.1016/0003-3472(77)90117-8) DOI
Lindstrom L, Alatalo RV, Mappes J. 1997. Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proc. R. Soc. Lond. B 264, 149-153. ( 10.1098/rspb.1997.0022) DOI
Brower AV. 1995. Locomotor mimicry in butterflies? A critical review of the evidence. Phil. Trans. R. Soc. Lond. B 347, 413-425. ( 10.1098/rstb.1995.0033) DOI
Páez E, Valkonen JK, Willmott KR, Matos-Maraví P, Elias M, Mappes J. 2021. Data from: Hard to catch: experimental evidence supports evasive mimicry. Dryad Digital Repository. ( 10.5061/dryad.vq83bk3rj) PubMed DOI PMC
Quantifying the success of prey crypsis, aposematism, and evasiveness in avoiding predator attack
Hard to catch: experimental evidence supports evasive mimicry