Hard to catch: experimental evidence supports evasive mimicry

. 2021 Mar 10 ; 288 (1946) : 20203052. [epub] 20210310

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33715434

Most research on aposematism has focused on chemically defended prey, but the signalling difficulty of capture remains poorly explored. Similar to classical Batesian and Müllerian mimicry related to distastefulness, such 'evasive aposematism' may also lead to convergence in warning colours, known as evasive mimicry. A prime candidate group for evasive mimicry are Adelpha butterflies, which are agile insects and show remarkable colour pattern convergence. We tested the ability of naive blue tits to learn to avoid and generalize Adelpha wing patterns associated with the difficulty of capture and compared their response to that of birds that learned to associate the same wing patterns with distastefulness. Birds learned to avoid all wing patterns tested and generalized their aversion to other prey to some extent, but learning was faster with evasive prey compared to distasteful prey. Our results on generalization agree with longstanding observations of striking convergence in wing colour patterns among Adelpha species, since, in our experiments, perfect mimics of evasive and distasteful models were always protected during generalization and suffered the lowest attack rate. Moreover, generalization on evasive prey was broader compared to that on distasteful prey. Our results suggest that being hard to catch may deter predators at least as effectively as distastefulness. This study provides empirical evidence for evasive mimicry, a potentially widespread but poorly understood form of morphological convergence driven by predator selection.

Zobrazit více v PubMed

Poulton EB. 1890. The colours of animals: their meaning and use. Especially considered in the case of insects. The international scientific series, 2nd edn. London, UK: Kegan Paul, Trench Trübner, & Co.

Cott HB. 1940. Adaptive coloration in animals. London, UK: Methuen.

Mappes J, Marples N, Endler JA. 2005. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598-603. ( 10.1016/j.tree.2005.07.011) PubMed DOI

Exnerová A, Štys P, Fučíková E, Veselá S, Svádová K, Prokopová M, Jarošík V, Fuchs R, Landová E. 2006. Avoidance of aposematic prey in European tits (Paridae): learned or innate? Behav. Ecol. 18, 148-156. ( 10.1093/beheco/arl061) DOI

Skelhorn J, Halpin CG, Rowe C. 2016. Learning about aposematic prey. Behav. Ecol. 27, 955-964. ( 10.1093/beheco/arw009) DOI

Ruxton GD, Allen WL, Sherratt TN, Speed MP. 2018. Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford, UK: Oxford University Press.

Muller F. 1879.

Symula R, Schulte R, Summers K. 2001. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc. R. Soc. Lond. B 268, 2415-2421. ( 10.1098/rspb.2001.1812) PubMed DOI PMC

Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. 2007. Experimental evidence for aposematism in the dendrobatid poison frog DOI

Marek PE, Bond JE. 2009. A Mullerian mimicry ring in Appalachian millipedes. Proc. Natl Acad. Sci. USA 106, 9755-9760. ( 10.1073/pnas.0810408106) PubMed DOI PMC

Wilson JS, Jahner JP, Forister ML, Sheehan ES, Williams KA, Pitts JP. 2015. North American velvet ants form one of the world's largest known Müllerian mimicry complexes. Curr. Biol. 25, R704-R706. ( 10.1016/j.cub.2015.06.053) PubMed DOI

DeVries PJ. 1987. The butterflies of costa rica and their natural history. Vol. I: Papilionidae, Pieridae, Nymphalidae. Princeton, NJ: Princeton University Press.

Brown KS. 1988. Mimicry, aposematism and crypsis in neotropical Lepidoptera: the importance of dual signals. Bull. Soc. Zool. Fr. 113, 83-101

Beccaloni GW. 1997. Ecology, natural history and behaviour of Ithomiine butterflies and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiine). Trop. Lepid. 8, 103-124.

Mallet J, Mcmillan WO, Jiggins CD. 1988. Mimicry and warning colour at the boundary between races and species. In Endless forms: species and speciation (eds Howard DJ, Berlocher SH), pp. 390-403. New York, NY: Oxford University Press

Willmott KR, Robinson Willmott JC, Elias M, Jiggins CD. 2017. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B 284, 20170744. ( 10.1098/rspb.2017.0744) PubMed DOI PMC

Pinheiro CEG, Freitas AVL, Campos VC, DeVries PJ, Penz CM. 2016. Both palatable and unpalatable butterflies use bright colors to signal difficulty of capture to predators. Neotrop. Entomol. 45, 107-113. ( 10.1007/s13744-015-0359-5) PubMed DOI

Guerra TJ. 2019. Evasive mimicry: too beetle, or not too beetle? Ecology 100, e02773. ( 10.1002/ecy.2773) PubMed DOI

Ruxton GD, Speed M, Sherratt TN. 2004. Evasive mimicry: when (if ever) could mimicry based on difficulty of capture evolve? Proc. R. Soc. Lond. B 271, 2135-2142. ( 10.1098/rspb.2004.2816) PubMed DOI PMC

Hasson O. 1991. Pursuit-deterrent signals: communication between prey and predator. Trends Ecol. Evol. 6, 325-329. ( 10.1016/0169-5347(91)90040-5) PubMed DOI

Srygley RB. 1999. Incorporating motion into investigations of mimicry. Evol. Ecol. 13, 691-708. ( 10.1023/A:1011046202928) DOI

Cyriac VP, Kodandaramaiah U. 2019. Don't waste your time: predators avoid prey with conspicuous colors that signal long handling time. Evol. Ecol. 33, 625-636. ( 10.1007/s10682-019-09998-9) DOI

Brower JV. 1958. Experimental studies of mimicry in some North American butterflies. 1. The monarch, DOI

van Someren VGL, Jackson THE. 1959. Some comments on protective resemblance amongst African lepidoptera (Rhopalocera). J. Lepidopterists' Soc. 13, 121-150.

Pinheiro CEG. 1996. Palatability and escaping ability in Neotropical butterflies: tests with wild kingbirds ( DOI

Pinheiro CEG, Freitas AVL. 2014. Some possible cases of escape mimicry in neotropical butterflies. Neotrop. Entomol. 43, 393-398. ( 10.1007/s13744-014-0240-y) PubMed DOI

Pinheiro CEG, Campos VC. 2019. The responses of wild jacamars ( DOI

Gibson DO. 1974. Batesian mimicry without distastefulness? Nature 250, 77-79. ( 10.1038/250077a0) PubMed DOI

Gibson, DO. 1980. The role of escape in mimicry and polymorphism: I. The response of captive birds to artificial prey. Biol. J. Linn. Soc. 14, 201-214. ( 10.1111/j.1095-8312.1980.tb00105.x) DOI

Hancox AP, Allen JA. 1991. A simulation of evasive mimicry in the wild. J. Zool. 223, 9-13. ( 10.1111/j.1469-7998.1991.tb04745.x) DOI

Willmott KR. 2003. The genus

Willmott KR. 2003. Cladistic analysis of the Neotropical butterfly genus DOI

Ebel ER, DaCosta JM, Sorenson MD, Hill RI, Briscoe AD, Willmott KR, Mullen SP. 2015. Rapid diversification associated with ecological specialization in Neotropical PubMed DOI

Aiello A. 1984. DOI

Finkbeiner SD, Salazar PA, Nogales S, Rush CE, Briscoe AD, Hill RI, Kronforst MR, Willmott KR, Mullen SP. 2018. Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proc. R. Soc. B 285, 20172786. ( 10.1098/rspb.2017.2786) PubMed DOI PMC

Hill RI, Mullen SP. 2019. Adult feeding as a potential mechanism for unprofitability in neotropical DOI

Chai P, Srygley RB. 1990. Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. Am. Nat. 135, 748-765. ( 10.1086/285072) DOI

Finkbeiner SD, Briscoe AD, Mullen SP. 2017. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution 71, 949-959. ( 10.1111/evo.13165) PubMed DOI

Srygley RB, Dudley R. 1993. Correlations of the position of center of body mass with butterfly escape tactics. J. Exp. Biol. 174,155-166.

Mallet J, Singer MC. 1987. Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biol. J. Linn. Soc. 32, 337-350. ( 10.1111/j.1095-8312.1987.tb00435.x) DOI

Mullen SP, Savage WK, Wahlberg N, Willmott KR. 2011. Rapid diversification and not clade age explains high diversity in neotropical PubMed DOI PMC

Kikuchi DW, Mappes J, Sherratt TN, Valkonen JK. 2016. Selection for multicomponent mimicry: equal feature salience and variation in preferred traits. Behav. Ecol. 27, 1515-1521. ( 10.1093/beheco/arw072) DOI

Rönkä K, De Pasqual C, Mappes J, Gordon S, Rojas B.. 2018. Colour alone matters: no predator generalization among morphs of an aposematic moth. Anim. Behav. 135, 153-163. ( 10.1016/j.anbehav.2017.11.015) DOI

Rojas B, Mappes J, Burdfield-Steel E. 2019. Multiple modalities in insect warning displays have additive effects against wild avian predators. Behav. Ecol. Sociobiol. 73, 37. ( 10.1007/s00265-019-2643-6) DOI

Hart NS, Partridge JC, Cuthill IC, Bennett ATD. 2000. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit ( PubMed DOI

Hart NS, Vorobyev M. 2005. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J. Comp. Physiol. A. 191, 381-392. ( 10.1007/s00359-004-0595-3) PubMed DOI

Smith HG. 1987. Intraspecific variation in migratory pattern of a partial migrant, the blue tit ( DOI

Hämäläinen L, Mappes J, Rowland HM, Teichmann M, Thorogood R. 2020. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 89, 1153-1164. ( 10.1111/1365-2656.13180) PubMed DOI PMC

Ihalainen E, Rowland HM, Speed MP, Ruxton GD, Mappes J. 2012. Prey community structure affects how predators select for Müllerian mimicry. Proc. R. Soc. B 279, 2099-2105. ( 10.1098/rspb.2011.2360) PubMed DOI PMC

Mérot C, Frérot B, Leppik E, Joron M. 2015. Beyond magic traits: multimodal mating cues in PubMed DOI

Lindroth CH. 1971. Disappearance as a protective factor. A supposed case of Batesian mimicry among beetles (Coleoptera: Carabidae and Chrysomelidae). Ent. scand. 2, 41-48. ( 10.1163/187631271X00031) DOI

Holm E, Kirsten JF. 1979. Pre-adaptation and speed mimicry among Namib Desert scarabaeids with orange elytra. J. Arid. Environ. 2, 263-271. ( 10.1016/S0140-1963(18)31776-2) DOI

Srygley RB. 1994. Locomotor mimicry in butterflies? The associations of positions of centres of mass among groups of mimetic, unprofitable prey. Phil. Trans. R. Soc. Lond. B 343, 145-155. ( 10.1098/rstb.1994.0017) DOI

Ham AD, Ihalainen E, Lindström L, Mappes J. 2006. Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behav. Ecol. Sociobiol. 60, 482-491. ( 10.1007/s00265-006-0190-4) DOI

Lindstrom L, Alatalo RV, Mappes J. 1999. Reactions of hand-reared and wild-caught predators toward warningly colored, gregarious, and conspicuous prey. Behav. Ecol. 10, 317-322. ( 10.1093/beheco/10.3.317) DOI

Aronsson M, Gamberale-Stille G. 2008. Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Anim. Behav. 75, 417-423. ( 10.1016/j.anbehav.2007.05.006) DOI

Chittka L, Osorio D. 2007. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339. ( 10.1371/journal.pbio.0050339) PubMed DOI PMC

Arias M, le Poul Y, Chouteau M, Boisseau R, Rosser N, Théry M, Llaurens V. 2016. Crossing fitness valleys: empirical estimation of a fitness landscape associated with polymorphic mimicry. Proc. R. Soc. B 283, 20160391. ( 10.1098/rspb.2016.0391) PubMed DOI PMC

Finkbeiner SD, Briscoe AD, Reed RD. 2014. Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in PubMed DOI

Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O. 2014. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965-969. ( 10.1016/j.cub.2014.02.061) PubMed DOI

Hetz M, Slobodchikoff CN. 1988. Predation pressure on an imperfect Batesian mimicry complex in the presence of alternative prey. Oecologia 76, 570-573. ( 10.1007/BF00397872) PubMed DOI

Beatty CD, Beirinckx K, Sherratt TN. 2004. The evolution of müllerian mimicry in multispecies communities. Nature 431, 63-66. ( 10.1038/nature02818) PubMed DOI

Arias M, Mappes J, Théry M, Llaurens V. 2015. Inter-species variation in unpalatability does not explain polymorphism in a mimetic species. Evol. Ecol. 30, 419-433. ( 10.1007/s10682-015-9815-2) DOI

Muñoz AP, Kéry M, Martins PV, Ferraz G. 2018. Age effects on survival of Amazon forest birds and the latitudinal gradient in bird survival. The Auk 135, 299-313. ( 10.1642/auk-17-91.1) DOI

Rönkä K, Valkonen JK, Nokelainen O, Rojas B, Gordon S, Burdfield-Steel E, Mappes J. 2020. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654-1663. ( 10.1111/ele.13597) PubMed DOI

Ritland DB. 1995. Comparative unpalatability of mimetic viceroy butterflies ( PubMed DOI

Brower LP, Ryerson W, Coppinger L, Glazier S. 1968. Ecological chemistry and the palatability spectrum. Science 161, 1349-1351. ( 10.1126/science.161.3848.1349) PubMed DOI

Pinheiro CEG. 2003. Does Müllerian mimicry work in nature? Experiments with butterflies and birds (Tyrannidae). Biotropica. 35, 356-364.

Terhune EC. 1977. Components of a visual stimulus used by scrub jays to discriminate a Batesian model. Am. Nat. 111, 435-451. ( 10.1086/283178) DOI

Endler JA, Mappes J. 2004. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 163, 532-547. ( 10.1086/382662) PubMed DOI

Hämäläinen L, Mappes J, Rowland HM, Thorogood R. 2019. Social information use about novel aposematic prey is not influenced by a predator's previous experience with toxins. Funct. Ecol. 33, 1982-1992. ( 10.1111/1365-2435.13395) DOI

Duncan CJ, Sheppard PM. 1965. Sensory discrimination and its role in the evolution of Batesian mimicry. Behaviour 24, 269-282. ( 10.1163/156853965X00066) PubMed DOI

Goodale MA, Sneddon I. 1977. The effect of distastefulness of the model on the predation of artificial Batesian mimics. Anim. Behav. 25, 660-665. ( 10.1016/0003-3472(77)90117-8) DOI

Lindstrom L, Alatalo RV, Mappes J. 1997. Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proc. R. Soc. Lond. B 264, 149-153. ( 10.1098/rspb.1997.0022) DOI

Brower AV. 1995. Locomotor mimicry in butterflies? A critical review of the evidence. Phil. Trans. R. Soc. Lond. B 347, 413-425. ( 10.1098/rstb.1995.0033) DOI

Páez E, Valkonen JK, Willmott KR, Matos-Maraví P, Elias M, Mappes J. 2021. Data from: Hard to catch: experimental evidence supports evasive mimicry. Dryad Digital Repository. ( 10.5061/dryad.vq83bk3rj) PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.vq83bk3rj

figshare
10.6084/m9.figshare.c.5320316

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...