The evolution and ecology of multiple antipredator defences
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
316099922
Deutsche Forschungsgemeinschaft
PubMed
37363877
DOI
10.1111/jeb.14192
Knihovny.cz E-zdroje
- Klíčová slova
- antergy, defence portfolio, defence syndrome, intraspecific variation, predation sequence, predator cognition, secondary defences, synergy, trade-offs,
- MeSH
- ekologie * MeSH
- fenotyp MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.
CEFE Université de Montpellier CNRS EPHE IRD Montpellier France
Centre for Ecology and Conservation University of Exeter Penryn UK
Computer Vision Center Computer Science Department Universitat Autònoma de Barcelona Barcelona Spain
Department of Biological Sciences California State University Long Beach California USA
Department of Biological Sciences Purdue University West Lafayette Indiana USA
Department of Biology and Environmental Science University of Jyväskylä Jyväskylä Finland
Department of Biology Carleton University Ottawa Ontario Canada
Department of Biology East Carolina University Greenville North Carolina USA
Department of Biology Trent University Peterborough Ontario Canada
Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
Department of Biosciences Swansea University Swansea UK
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany
Department of Forest Sciences University of Helsinki Helsinki Finland
Department of Integrative Biology Oregon State University Corvallis Oregon USA
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Evolutionary Biology Universität Bielefeld Bielefeld Germany
Grupo de Biodiversidad Medio Ambiente y Salud Universidad de Las Américas Quito Ecuador
Hawkesbury Institute of the Environment Western Sydney University Penrith New South Wales Australia
HiLIFE Helsinki Institute of Life Sciences University of Helsinki Helsinki Finland
Institute of Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
Institute of Biosciences Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
Institute of Integrative Biology ETH Zurich Zurich Switzerland
National Centre for Biological Sciences Tata Institute of Fundamental Research Bengaluru India
School of Biological Sciences The University of Queensland St Lucia Queensland Australia
School of Biological Sciences University of Bristol Bristol UK
School of BioSciences University of Melbourne Melbourne Victoria Australia
School of Life Sciences University of Nottingham Nottingham UK
School of Natural Sciences Macquarie University Sydney New South Wales Australia
School of Psychology and Neuroscience University of St Andrews St Andrews UK
School of Science Western Sydney University Penrith New South Wales Australia
Zobrazit více v PubMed
Agrawal, A. A. (2011). Current trends in the evolutionary ecology of plant defence. Functional Ecology, 25, 420-432.
Agrawal, A. A., & Fishbein, M. (2008). Phylogenetic escalation and decline of plant defense strategies. Proceedings of the National Academy of Sciences, 105, 10057-10060.
Akcali, C. K., Adán Pérez-Mendoza, H., Salazar-Valenzuela, D., Kikuchi, D. W., Guayasamin, J. M., & Pfennig, D. W. (2019). Evaluating the utility of camera traps in field studies of predation. PeerJ, 7, e6487.
Arbuckle, K., & Speed, M. P. (2015). Antipredator defenses predict diversification rates. Proceedings of the National Academy of Sciences, 112, 13597-13602.
Arias, M., Mappes, J., Desbois, C., Gordon, S., McClure, M., Elias, M., Nokelainen, O., & Gomez, D. (2019). Transparency reduces predator detection in mimetic clearwing butterflies. Functional Ecology, 33, 1110-1119.
Aronsson, M., & Gamberale-Stille, G. (2008). Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Animal Behaviour, 75, 417-423.
Barber, J. R., Razak, K. A., & Fuzessery, Z. M. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 189, 843-855.
Barnett, J. B., & Cuthill, I. C. (2014). Distance-dependent defensive coloration. Current Biology, 24, R1157-R1158.
Bateman, A. W., Vos, M., & Anholt, B. R. (2014). When to defend: Antipredator defenses and the predation sequence. The American Naturalist, 183, 847-855.
Benard, M. F. (2006). Survival trade-offs between two predator-induced phenotypes in pacific treefrogs (Pseudacris regilla). Ecology, 87, 340-346.
Blanchard, B. D., & Moreau, C. S. (2017). Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution, 71, 315-328.
Britton, N. F., Planqué, R., & Franks, N. R. (2007). Evolution of defence portfolios in exploiter-victim systems. Bulletin of Mathematical Biology, 69, 957-988.
Brodie, E. D. (1989). Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides. Nature, 342, 542-543.
Brodie, E. D. I. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 1284-1298.
Brodie, E. D., Jr., Formanowicz, D. R., Jr., & Brodie, E. D., III. (1991). Predator avoidance and antipredator mechanisms: Distinct pathways to survival. Ethology Ecology & Evolution, 3, 73-77.
Broom, M., Higginson, A. D., & Ruxton, G. D. (2010). Optimal investment across different aspects of anti-predator defences. Journal of Theoretical Biology, 263, 579-586.
Carmona, D., Lajeunesse, M. J., & Johnson, M. T. J. (2011). Plant traits that predict resistance to herbivores: Traits that predict resistance to herbivores. Functional Ecology, 25, 358-367.
Caro, T. (2005). Antipredator defenses in birds and mammals. University of Chicago Press.
Caro, T., & Koneru, M. (2021). Towards an ecology of protective coloration. Biological Reviews, 96, 611-641.
Caro, T., & Ruxton, G. (2019). Aposematism: Unpacking the defences. Trends in Ecology & Evolution, 34, 595-604.
Caro, T., Sherratt, T. N., & Stevens, M. (2016). The ecology of multiple colour defences. Evolutionary Ecology, 30, 797-809.
Charlesworth, D. (2016). The status of supergenes in the 21st century: Recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations. Evolutionary Applications, 9, 74-90.
Chittka, L., & Osorio, D. (2007). Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biology, 5, e339.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. The Behavioral and Brain Sciences, 36, 181-204.
Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111, 1119-1144.
Cott, H. B. (1940). Adaptive coloration in animals. Methuen & Co., Ltd.
Courville, A. C., Daw, N. D., & Touretzky, D. S. (2006). Bayesian theories of conditioning in a changing world. Trends in Cognitive Sciences, 10, 294-300.
Crofts, S. B., & Stankowich, T. (2021). Stabbing spines: A review of the biomechanics and evolution of defensive spines. Integrative and Comparative Biology, 61, 655-667.
Cuthill, I. C., Allen, W. L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M. E., Hill, G. E., Jablonski, N. G., Jiggins, C. D., Kelber, A., Mappes, J., Marshall, J., Merrill, R., Osorio, D., Prum, R., Roberts, N. W., Roulin, A., Rowland, H. M., Sherratt, T. N., … Caro, T. (2017). The biology of color. Science, 357, eaan0221.
Dewitt, T. J., Sih, A., & Hucko, J. A. (1999). Trait compensation and cospecialization in a freshwater snail: Size, shape and antipredator behaviour. Animal Behaviour, 58, 397-407.
Drinkwater, E., Allen, W. L., Endler, J. A., Hanlon, R. T., Holmes, G., Homziak, N. T., Kang, C., Leavell, B. C., Lehtonen, J., Loeffler-Henry, K., Ratcliffe, J. M., Rowe, C., Ruxton, G. D., Sherratt, T. N., Skelhorn, J., Skojec, C., Smart, H. R., White, T. E., Yack, J. E., … Umbers, K. D. L. (2022). A synthesis of deimatic behaviour. Biological Reviews, 97, 2237-2267.
Dukas, R. (2002). Behavioural and ecological consequences of limited attention. Philosophical transactions of the Royal Society of London. Series B: Biological Sciences, 357, 1539-1547.
Edmunds, M. (1974). Defence in animals: A survey of anti-predator defences. Longman Publishing Group.
Ehrlich, E., Kath, N. J., & Gaedke, U. (2020). The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton. The ISME Journal, 14, 1451-1462.
Eklöv, P., & VanKooten, T. (2001). Facilitation among piscivorous predators: Effects of prey habitat use. Ecology, 82, 2486-2494.
Endler, J. A. (1986). Defense against predators. In M. E. Feder & G. E. Lauder (Eds.), Predator prey relationships, perspectives and approaches from the study of lower vertebrates (pp. 109-134). University of Chicago Press.
Endler, J. A. (1991). Interactions between predator and prey. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology (pp. 169-196). Blackwell Scientific Publications.
Endler, J. A., & Mappes, J. (2004). Predator mixes and the conspicuousness of aposematic signals. The American Naturalist, 163, 532-547.
Findlay, B. L. (2016). The chemical ecology of predatory soil bacteria. ACS Chemical Biology, 11, 1502-1510.
Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68, 3410-3420.
Gaitonde, N., Joshi, J., & Kunte, K. (2018). Evolution of ontogenic change in color defenses of swallowtail butterflies. Ecology and Evolution, 8, 9751-9763.
Hagman, M., & Forsman, A. (2003). Correlated evolution of conspicuous coloration and body size in poison frongs (Dendrobatidate). Evolution, 57, 2904-2910.
Hammill, E., Rogers, A., & Beckerman, A. P. (2008). Costs, benefits and the evolution of inducible defences: A case study with Daphnia pulex. Journal of Evolutionary Biology, 21, 705-715.
Havlikova, M., Bosakova, T., Petschenka, G., Cabala, R., Exnerova, A., & Bosakova, Z. (2020). Analysis of defensive secretion of a milkweed bug Lygaeus equestris by 1D GC-MS and GC×GC-MS: Sex differences and host-plant effect. Scientific Reports, 10(1), 3092.
Hodge, J. R., Alim, C., Bertrand, N. G., Lee, W., Price, S. A., Tran, B., & Wainwright, P. C. (2018). Ecology shapes the evolutionary trade-off between predator avoidance and defence in coral reef butterflyfishes. Ecology Letters, 21, 1033-1042.
Holmes, G. G., Delferrière, E., Rowe, C., Troscianko, J., & Skelhorn, J. (2018). Testing the feasibility of the startle-first route to deimatism. Scientific Reports, 8, 10737.
Hossie, T., Landolt, K., & Murray, D. L. (2017). Determinants and co-expression of anti-predator responses in amphibian tadpoles: A meta-analysis. Oikos, 126, 173-184.
Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., Edwards, F., Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E., Lewis, H. M., Olesen, J. M., van Veen, F. J. F., Warren, P. H., & Woodward, G. (2009). Ecological networks-Beyond food webs. Journal of Animal Ecology, 78, 253-269.
Jakobs, O., Wang, L. E., Dafotakis, M., Grefkes, C., Zilles, K., & Eickhoff, S. B. (2009). Effects of timing and movement uncertainty implicate the temporo-parietal junction in the prediction of forthcoming motor actions. NeuroImage, 47, 667-677.
Jandt, J. M., Bengston, S., Pinter-Wollman, N., Pruitt, J. N., Raine, N. E., Dornhaus, A., & Sih, A. (2014). Behavioural syndromes and social insects: Personality at multiple levels. Biological Reviews, 89, 48-67.
Johnson, E. H. (2020). Experimental tests of bivalve shell shape reveal potential tradeoffs between mechanical and behavioral defenses. Scientific Reports, 10, 19425.
Kang, C., Cho, H.-J., Lee, S.-I., & Jablonski, P. G. (2016). Post-attack aposematic display in prey facilitates predator avoidance learning. Frontiers in Ecology and Evolution, 4, 35.
Kang, C., Moon, H., Sherratt, T. N., Lee, S.-I., & Jablonski, P. G. (2017). Multiple lines of anti-predator defence in the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Biological Journal of the Linnean Society, 120, 115-124.
Kang, C., Zahiri, R., & Sherratt, T. N. (2017). Body size affects the evolution of hidden colour signals in moths. Proceedings of the Royal Society B, 284, 20171287.
Kazemi, B., Gamberale-Stille, G., Tullberg, B. S., & Leimar, O. (2014). Stimulus salience as an explanation for imperfect mimicry. Current Biology, 24, 965-969.
Keith, R. A., & Mitchell-Olds, T. (2019). Antagonistic selection and pleiotropy constrain the evolution of plant chemical defenses. Evolution, 73, 947-960.
Kikuchi, D. W., Dornhaus, A., Gopeechund, V., & Sherratt, T. N. (2019). Signal categorization by foraging animals depends on ecological diversity. eLife, 8, e43965.
Kikuchi, D. W., Herberstein, M. E., Barfield, M., Holt, R. D., & Mappes, J. (2021). Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 96, 2446-2460.
Kooyers, N. J., Donofrio, A., Blackman, B. K., & Holeski, L. M. (2020). The genetic architecture of plant defense trade-offs in a common monkeyflower. Journal of Heredity, 111, 333-345.
Kunte, K., Kizhakke, A. G., & Nawge, V. (2021). Evolution of mimicry rings as a window into community dynamics. Annual Review of Ecology, Evolution, and Systematics, 52, 315-341.
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402-416.
Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210-1226.
Leavell, B. C., Rubin, J. J., McClure, C. J. W., Miner, K. A., Branham, M. A., & Barber, J. R. (2018). Fireflies thwart bat attack with multisensory warnings. Science Advances, 4, eaat6601.
Lindstedt, C., Boncoraglio, G., Cotter, S., Gilbert, J., & Kilner, R. M. (2017). Aposematism in the burying beetle? Dual function of anal fluid in parental care and chemical defense. Behavioral Ecology, 28, 1414-1422.
Lindstedt, C., Schroderus, E., Lindström, L., Mappes, T., & Mappes, J. (2016). Evolutionary constraints of warning signals: A genetic trade-off between the efficacy of larval and adult warning coloration can maintain variation in signal expression. Evolution, 70, 2562-2572.
Loeffler-Henry, K., Kang, C., & Sherratt, T. N. (2023). Evolutionary transitions from camouflage to aposematism: Hidden signals play a pivotal role. Science, 379, 1136-1140.
Loeffler-Henry, K., Kang, C., Yip, Y., Caro, T., & Sherratt, T. N. (2018). Flash behavior increases prey survival. Behavioral Ecology, 29, 528-533.
Mappes, J., Marples, N., & Endler, J. (2005). The complex business of survival by aposematism. Trends in Ecology & Evolution, 20, 598-603.
Marples, N. M., Speed, M. P., & Thomas, R. J. (2018). An individual-based profitability spectrum for understanding interactions between predators and their prey. Biological Journal of the Linnean Society, 125, 1-13.
Mayrhofer, N., Velicer, G. J., Schaal, K. A., & Vasse, M. (2021). Behavioral interactions between bacterivorous nematodes and predatory bacteria in a synthetic community. Microorganisms, 9, 1362.
McGill, B. J., Chase, J. M., Hortal, J., Overcast, I., Rominger, A. J., Rosindell, J., Borges, P. A. V., Emerson, B. C., Etienne, R. S., Hickerson, M. J., Mahler, D. L., Massol, F., McGaughran, A., Neves, P., Parent, C., Patiño, J., Ruffley, M., Wagner, C. E., & Gillespie, R. (2019). Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 28, 1925-1936.
Medina, I., Vega-Trejo, R., Wallenius, T., Symonds, M. R. E., & Stuart-Fox, D. (2020). From cryptic to colorful: Evolutionary decoupling of larval and adult color in butterflies. Evolution Letters, 4, 34-43.
Moles, A. T., Peco, B., Wallis, I. R., Foley, W. J., Poore, A. G., Seabloom, E. W., Vesk, P. A., Bisigato, A. J., Cella-Pizarro, L., Clark, C. J., Cohen, P. S., Cornwell, W. K., Edwards, W., Ejrnaes, R., Gonzales-Ojeda, T., Graae, B. J., Hay, G., Lumbwe, F. C., Magaña-Rodríguez, B., … Hui, F. K. C. (2013). Correlations between physical and chemical defences in plants: Tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? New Phytologist, 198, 252-263.
Moore, B. P., Brown, W. V., & Rothschild, M. (1990). Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology, 1, 43-51.
Munoz, N. E., & Blumstein, D. T. (2012). Multisensory perception in uncertain environments. Behavioral Ecology, 23, 457-462.
Nakayama, S., & Miyatake, T. (2010). Genetic trade-off between abilities to avoid attack and to mate: A cost of tonic immobility. Biology Letters, 6, 18-20.
Nielsen, S. V., Oliver, P. M., Laver, R. J., Bauer, A. M., & Noonan, B. P. (2016). Stripes, jewels and spines: Further investigations into the evolution of defensive strategies in a chemically defended gecko radiation (Strophurus, Diplodactylidae). Zoologica Scripta, 45, 481-493.
Ottocento, C., Winters, A. E., Rojas, B., Mappes, J., & Burdfield-Steel, E. (in press). Not just the sum of its parts: Geographic variation and nonadditive effects of pyrazines in the chemical defence of an aposematic moth. Journal of Evolutionary Biology. https://doi.org/10.1111/jeb.14142
Partan, S. R., & Marler, P. (2005). Issues in the classification of multimodal communication signals. The American Naturalist, 166, 231-245.
Pekár, S. (2014). Comparative analysis of passive defences in spiders (Araneae). Journal of Animal Ecology, 83, 779-790.
Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R., & Sherratt, T. N. (2012). A comparative analysis of the evolution of imperfect mimicry. Nature, 483, 461-464.
Penney, H. D., Hassall, C., Skevington, J. H., Lamborn, B., & Sherratt, T. N. (2014). The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183, 281-289.
Poulton, E. B. (1890). The colours of animals: Their meaning and use, especially considered in the case of insects. Kegan Paul, Trench, Trubner & Co.
Ratcliffe, J. M., & Nydam, M. L. (2008). Multimodal warning signals for a multiple predator world. Nature, 455, 96-99.
Riipi, M., Alatalo, R. V., LindstroÈm, L., & Mappes, J. (2001). Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature, 413, 512-514.
Riley, J. L., Haff, T. M., Ryeland, J., Drinkwater, E., & Umbers, K. D. L. (2022). The protective value of the colour and shape of the mountain katydid's antipredator defence. Journal of Evolutionary Biology. https://doi.org/10.1111/jeb.14067
Rodriguez, J., Jones, T. H., Sierwald, P., Marek, P. E., Shear, W. A., Brewer, M. S., Kocot, K. M., & Bond, J. E. (2018). Step-wise evolution of complex chemical defenses in millipedes: A phylogenomic approach. Scientific Reports, 8, 1-10.
Rojas, B., Burdfield-Steel, E., Pakkanen, H., Suisto, K., Maczka, M., Schulz, S., & Mappes, J. (2017). How to fight multiple enemies: Target-specific chemical defences in an aposematic moth. Proceedings of the Royal Society B: Biological Sciences, 284, 20171424.
Rojas, B., Mappes, J., & Burdfield-Steel, E. (2019). Multiple modalities in insect warning displays have additive effects against wild avian predators. Behavioral Ecology and Sociobiology, 73, 37.
Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., Barrio, I. C., Basset, Y., Boesing, A. L., Bonebrake, T. C., Cameron, E. K., Dáttilo, W., Donoso, D. A., Drozd, P., Gray, C. L., Hik, D. S., Hill, S. J., Hopkins, T., Huang, S., … Slade, E. M. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356, 742-744.
Rößler, D. C., Lötters, S., Veith, M., Fugmann, M., Peters, C., Künzel, S., & Krehenwinkel, H. (2020). An amplicon sequencing protocol for attacker identification from DNA traces left on artificial prey. Methods in Ecology and Evolution, 11, 1338-1347.
Rowe, C. (1999). Receiver psychology and the evolution of multicomponent signals. Animal Behaviour, 58, 921-931.
Rowe, C. (2002). Sound improves visual discrimination learning in avian predators. Proceedings of the Royal Society of London B, 269, 1353-1357.
Rowe, C., & Guilford, T. (1996). Hidden colour aversions in domestic chicks triggered by pyrazine odours of insect warning displays. Nature, 383, 520-522.
Rowe, C., & Halpin, C. (2013). Why are warning displays multimodal? Behavioral Ecology and Sociobiology, 67, 1425-1439.
Ruxton, G. D., Allen, W. L., Sherratt, T. N., & Speed, M. P. (2018). Avoiding attack (2nd ed.). Oxford University Press.
Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences of the United States of America, 100, 12792-12797.
Saporito, R. A., Donnelly, M. A., Garraffo, H. M., Spande, T. F., & Daly, J. W. (2006). Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. Journal of Chemical Ecology, 32, 795-814.
Sheriff, M. J., Orrock, J. L., Ferrari, M. C., Karban, R., Preisser, E. L., Sih, A., & Thaler, J. S. (2020). Proportional fitness loss and the timing of defensive investment: A cohesive framework across animals and plants. Oecologia, 193, 273-283.
Sherratt, T. N., & Holen, Ø. H. (2018). When should receivers follow multiple signal components? A closer look at the “flag” model. Behavioral Ecology, 29, e6-e8.
Sherratt, T. N., & Kang, C. (2018). Anti-predator behavior. In A. Córdoba-Aguilar, D. González-Tokman, & I. González-Santoyo (Eds.), Insect behavior: From mechanisms to ecological and evolutionary consequences (pp. 130-144). Oxford University Press.
Sherratt, T. N., Whissell, E., Webster, R., & Kikuchi, D. W. (2015). Hierarchical overshadowing of stimuli and its role in mimicry evolution. Animal Behaviour, 108, 73-79.
Sherratt, T. N., Wilkinson, D. M., & Bain, R. S. (2005). Explaining dioscorides' “double difference”: Why are some mushrooms poisonous, and do they signal their unprofitability? American Naturalist, 166, 9.
Shettleworth, S. J. (2009). Cognition, evolution, and behavior. Oxford University Press.
Siddall, E. C., & Marples, N. M. (2008). Better to be bimodal: The interaction of color and odor on learning and memory. Behavioral Ecology, 19, 425-432.
Sih, A., Englund, G., & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution, 13, 350-355.
Skelhorn, J., Halpin, C. G., & Rowe, C. (2016). Learning about Aposematic Prey. BEHECO, 27, 955-964.
Skelhorn, J., Holmes, G. G., Hossie, T. J., & Sherratt, T. N. (2016). Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behavioral Ecology, 27, 141-147.
Skelhorn, J., & Rowe, C. (2005). Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey. Biology Letters, 1, 500-503.
Skelhorn, J., & Rowe, C. (2016). Cognition and the evolution of camouflage. Proceedings of the Royal Society B, 283, 20152890.
Smith, J. A., Suraci, J. P., Hunter, J. S., Gaynor, K. M., Keller, C. B., Palmer, M. S., Atkins, J. L., Castañeda, I., Cherry, M. J., Garvey, P. M., Huebner, S. E., Morin, D. J., Teckentrup, L., Weterings, M. J. A., & Beaudrot, L. (2020). Zooming in on mechanistic predator-prey ecology: Integrating camera traps with experimental methods to reveal the drivers of ecological interactions. Journal of Animal Ecology, 89, 1997-2012.
Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73, 971-995.
Srygley, R. B. (2004). The aerodynamic costs of warning signals in palatable mimetic butterflies and their distasteful models. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 589-594.
Stankowich, T., Caro, T., & Cox, M. (2011). Bold coloration and the evolution of aposematism IN terrestrial carnivores: Aposematism and bold coloration. Evolution, 65, 3090-3099.
Stankowich, T., Haverkamp, P. J., & Caro, T. (2014). Ecological drivers of antipredator defenses in carnivores. Evolution, 68, 1415-1425.
Stankowich, T., & Romero, A. N. (2017). The correlated evolution of antipredator defences and brain size in mammals. Proceedings of the Royal Society B, 284, 20161857.
Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3, 259-268.
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. The MIT Press.
Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews. Neuroscience, 9, 255-266.
Stein, B. E., Stanford, T. R., & Rowland, B. A. (2020). Multisensory integration and the society for neuroscience: Then and now. The Journal of Neuroscience, 40, 3-11.
Stevens, M. (2007). Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society B: Biological Sciences, 274, 1457-1464.
Stevens, M., & Ruxton, G. D. (2012). Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society B, 279, 417-426.
Stevens, M., Searle, W. T. L., Seymour, J. E., Marshall, K. L., & Ruxton, G. D. (2011). Motion dazzle and camouflage as distinct anti-predator defenses. BMC Biology, 9, 81.
Thiery, S., & Kaimer, C. (2020). The predation strategy of Myxococcus xanthus. Frontiers in Microbiology, 11, 2.
Umbers, K. D. L., De Bona, S., White, T. E., Lehtonen, J., Mappes, J., & Endler, J. A. (2017). Deimatism: A neglected component of antipredator defence. Biology Letters, 13, 20160936.
Umeton, D., Tarawneh, G., Fezza, E., Read, J. C. A., & Rowe, C. (2019). Pattern and speed interact to hide moving prey. Current Biology, 29, 3109-3113.e3.
Valkonen, J., Niskanen, M., Björklund, M., & Mappes, J. (2011). Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evolutionary Ecology, 25, 1047-1063.
Valkonen, J. K., Nokelainen, O., Niskanen, M., Kilpimaa, J., Björklund, M., & Mappes, J. (2012). Variation in predator species abundance can cause variable selection pressure on warning signaling prey. Ecology and Evolution, 2, 1971-1976.
Valkonen, J. K., Vakkila, A., Pesari, S., Tuominen, L., & Mappes, J. (2020). Protective coloration of European vipers throughout the predation sequence. Animal Behaviour, 164, 99-104.
Van Buskirk, J. (2000). The costs of inducible defense in an anuran larvae. Ecology, 81, 2813-2821.
Van Der Meijden, A., Lobo Coelho, P., Sousa, P., & Herrel, A. (2013). Choose your weapon: Defensive behavior is associated with morphology and performance in scorpions. PLoS One, 8, e78955.
van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128, 137-142.
Vickers, M. E., & Taylor, L. A. (2020). Hemipteran defensive odors trigger predictable color biases in jumping spider predators. Scientific Reports, 10, 21898.
Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P., & Broom, M. (2019). A theory for investment across defences triggered at different stages of a predator-prey encounter. Journal of Theoretical Biology, 473, 9-19.
Winters, A. E., Lommi, J., Kirvesoja, J., Nokelainen, O., & Mappes, J. (2021). Multimodal aposematic defenses through the predation sequence. Frontiers in Ecology and Evolution, 9, 657740.
Yoshida, T., Hairston, N. G., & Ellner, S. P. (2004). Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proceedings of the Royal Society of London B, 271, 1947-1953.
Zvereva, E. L., Doktorovová, L., Hotová Svádová, K., Zverev, V., Štys, P., Adamová-Ježová, D., Kozlov, M. V., & Exnerová, A. (2018). Defence strategies of Chrysomela lapponica (Coleoptera: Chrysomelidae) larvae: Relative efficacy of secreted and stored defences against insect and avian predators. Biological Journal of the Linnean Society, 124, 533-546.
I remember you! Multicomponent warning signals and predator memory
Quantifying the success of prey crypsis, aposematism, and evasiveness in avoiding predator attack