I remember you! Multicomponent warning signals and predator memory
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39664075
PubMed Central
PMC11629967
DOI
10.1093/beheco/arae092
PII: arae092
Knihovny.cz E-zdroje
- Klíčová slova
- avian predators, color, discrimination learning, long-term memory, multicomponent signals, pattern, warning coloration,
- Publikační typ
- časopisecké články MeSH
To avoid potentially noxious prey, predators need to discriminate between palatable and unpalatable prey species. Unpalatable prey often exhibits visual warning signals, which can consist of multiple components, such as color and pattern. Although the role of particular components of visual warning signals in predator discrimination learning has been intensively studied, the importance of different components for predator memory is considerably less understood. In this study, we tested adult wild-caught great tits (Parus major) to find out, which components of prey visual warning signals are important when the birds learn to discriminate between palatable and unpalatable prey, and when they remember their experience over a longer time period. Birds were trained to discriminate between palatable and unpalatable artificial prey items that differed in both color and pattern. After 4 wk, the birds were retested in 3 groups: the first group was presented with the same prey as in the training, the second group was tested with the two prey types differing only in color, and the third group could use only the pattern as a discrimination trait. The results suggest that the birds remember their experience with unpalatable prey even after the period of 4 wk. Although the color appears to be more important than the pattern, the combination of both signal components is more effective for prey recognition after several weeks than either the color or pattern alone.
Zobrazit více v PubMed
Aoki M, Izawa EI, Koga K, Yanagihara S, Matsushima T.. 2000. Accurate visual memory of colors in controlling the pecking behavior of quail chicks. Zool Sci. 17:1053–1059. https://doi.org/10.2108/zsj.17.1053 PubMed DOI
Aronsson M, Gamberale-Stille G.. 2008. Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Anim Behav. 75:417–423. https://doi.org/10.1016/j.anbehav.2007.05.006 DOI
Aronsson M, Gamberale-Stille G.. 2009. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav Ecol. 20:1356–1362. https://doi.org/10.1093/beheco/arp141 DOI
Aronsson M, Gamberale-Stille G.. 2012. Colour and pattern similarity in mimicry: evidence for a hierarchical discriminative learning of different components. Anim Behav. 84:881–887. https://doi.org/10.1016/j.anbehav.2012.07.011 DOI
Aronsson M, Gamberale-Stille G.. 2013. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav Ecol. 24:349–354. https://doi.org/10.1093/beheco/ars170 DOI
Bogale BA, Sugawara S, Sakano K, Tsuda S, Sugita S.. 2012. Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos). Anim Cogn. 15:285–291. https://doi.org/10.1007/s10071-011-0439-9 PubMed DOI
Dolenska M, Nedvěd O, Veselý P, Tesařová M, Fuchs R.. 2009. What constitutes optical warning signals of ladybirds (Coleoptera: Coccinellidae) towards bird predators: colour, pattern, or general look? Biol J Linn Soc. 98:234–242. https://doi.org/10.1111/j.1095-8312.2009.01277.x DOI
Exnerová A, Svádová K, Štys P, Barcalová S, Landová E, Prokopova M, Socha R.. 2006. Importance of colour in the reaction of passerine predators to aposematic prey: experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol J Linn Soc. 88:143–153. https://doi.org/10.1111/j.1095-8312.2006.00611.x DOI
Gamberale-Stille G. 2001. Benefit by contrast: an experiment with live aposematic prey. Behav Ecol. 12:768–772. https://doi.org/10.1093/beheco/12.6.768 DOI
Gamberale-Stille G, Tullberg BS.. 1999. Experienced chicks show biased avoidance of stronger signals: an experiment with natural colour variation in live aposematic prey. Evol Ecol. 13:579–589. https://doi.org/10.1023/a:1006741626575 DOI
Guilford T. 1986. How do “warning colours” work? Conspicuousness may reduce recognition errors in experienced predators. Anim Behav. 34:286–288. https://doi.org/10.1016/0003-3472(86)90034-5 DOI
Ham AD, Ihalainen E, Lindström L, Mappes J.. 2006. Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behav Ecol Sociobiol. 60:482–491. https://doi.org/10.1007/s00265-006-0190-4 DOI
Hauglund K, Hagen SB, Lampe HM.. 2006. Responses of domestic chicks (Gallus gallus domesticus) to multimodal aposematic signals. Behav Ecol. 17:392–398. https://doi.org/10.1093/beheco/arj038 DOI
Hunter JS. 2009. Familiarity breeds contempt: effects of striped skunk color, shape, and abundance on wild carnivore behavior. Behav Ecol. 20:1315–1322. https://doi.org/10.1093/beheco/arp144 DOI
Johnston AN, Burne TH.. 2008. Aposematic colouration enhances memory formation in domestic chicks trained in a weak passive avoidance learning paradigm. Brain Res Bull. 76:313–316. https://doi.org/10.1016/j.brainresbull.2008.02.016 PubMed DOI
Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O.. 2014. Stimulus salience as an explanation for imperfect mimicry. Curr Biol. 24:965–969. https://doi.org/10.1016/j.cub.2014.02.061 PubMed DOI
Kikuchi DW, Allen WL, Arbuckle K, Aubier TG, Briolat ES, Burdfield‐Steel ER, Exnerová A.. 2023. The evolution and ecology of multiple antipredator defences. J Evol Biol. 36:975–991. https://doi.org/10.1111/jeb.14192 PubMed DOI
Ko YW, Liao CP, Clark RW, Hsu JY, Tseng HY, Huang WS.. 2020. Aposematic coloration of prey enhances memory retention in an agamid lizard. Anim Behav. 161:1–13. https://doi.org/10.1016/j.anbehav.2019.12.015 DOI
Kuklová L, Jůnová L, Kišelová M, Kuncová A, Exnerová A.. 2023. Does the type of task affect prey discrimination learning in avian predators? Ethology. 129:527–540. https://doi.org/10.1111/eth.13390 DOI
Lindström L, Alatalo RV, Mappes J, Riipi M, Vertainen L. 1999a. Can aposematic signals evolve by gradual change?. Nature 397(6716):249–251. https://doi.org/10.1038/16692. DOI
Lindström L, Alatalo RV, Mappes J.. 1999b. Reactions of hand reared and wild-caught predators towards warningly coloured, gregarious and conspicuous prey. Behav Ecol. 10:317–322. https://doi.org/10.1093/beheco/10.3.317 DOI
Osorio D, Jones CD, Vorobyev M.. 1999. Accurate memory for colour but not pattern contrast in chicks. Curr Biol. 9:199–202. https://doi.org/10.1016/s0960-9822(99)80089-x PubMed DOI
Penacchio O, Halpin CG, Cuthill IC, Lovell PG, Wheelwright M, Skelhorn J, Harris JM.. 2024. A computational neuroscience framework for quantifying warning signals. Methods Ecol Evol. 15:103–116. https://doi.org/10.1111/2041-210X.14268 DOI
Prudic KL, Skemp AK, Papaj DR.. 2007. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav Ecol. 18:41–46. https://doi.org/10.1093/beheco/arl046 DOI
R Core Team 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rönkä K, De Pasqual C, Mappes J, Gordon S, Rojas B.. 2018. Colour alone matters: no predator generalization among morphs of an aposematic moth. Anim Behav. 135:153–163. https://doi.org/10.1016/j.anbehav.2017.11.015 DOI
Rowe C. 1999. Receiver psychology and the evolution of multicomponent signals. Anim Behav. 58:921–931. https://doi.org/10.1006/anbe.1999.1242 PubMed DOI
Rowe C, Guilford T.. 1999. The evolution of multimodal warning displays. Evol Ecol. 13:655–671. https://doi.org/10.1023/a:1011021630244 DOI
Rowe C, Halpin C.. 2013. Why are warning displays multimodal? Behav Ecol Sociobiol. 67:1425–1439. https://doi.org/10.1007/s00265-013-1515-8 DOI
Rowe C, Lindström L, Lyytinen A.. 2004. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc Biol Sci. 271:407–413. https://doi.org/10.1098/rspb.2003.2615 PubMed DOI PMC
Ruxton GD, Allen WL, Sherratt TN, Speed MP.. 2018. Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. 2nd ed. Oxford, UK: Oxford University Press.
Sherratt TN, Beatty CD.. 2003. The evolution of warning signals as reliable indicators of prey defense. Am Nat. 162:377–389. https://doi.org/10.1086/378047 PubMed DOI
Sherratt TN, Holen OH.. 2018. When should receivers follow multiple signal components? A closer look at the “flag” model. Behav Ecol. 29:e6–e8. https://doi.org/10.1093/beheco/ary043 DOI
Skelhorn J, Rowe C.. 2006. Prey palatability influences predator learning and memory. Anim Behav. 71:1111–1118. https://doi.org/10.1016/j.anbehav.2005.08.011 DOI
Svádová K, Exnerová A, Štys P, Landova E, Valenta J, Fučíková A, Socha R.. 2009. Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. Anim Behav. 77:327–336. https://doi.org/10.1016/j.anbehav.2008.09.034 DOI
Svensson L. 1992. Identification guide to European Passerines. 4th ed. UK: British Trust for Ornithology.
Szabó A, Bělová M, Exnerová A.. 2024. Data from: I remember you! Multicomponent warning signals and predator memory. Behav Ecol. https://doi.org/10.5061/dryad.m63xsj4cm DOI
Webster MM, Rutz C.. 2020. How STRANGE are your study animals? Nature. 582:337–340. https://doi.org/10.1038/d41586-020-01751-5 PubMed DOI