The first RNA viruses detected in a trypanosome
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, dopisy
Grantová podpora
24-10009S
Grantová Agentura České Republiky
LERCO CZ.10.03.01/00/22_003/0000003
European Union
PubMed
41618309
PubMed Central
PMC12860189
DOI
10.1186/s12915-025-02497-0
PII: 10.1186/s12915-025-02497-0
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmaniavirus, Narnaviridae, Trypanosoma platydactyli, LRV, Trypanosomatidae, Vector ecology,
- MeSH
- fylogeneze MeSH
- genom virový MeSH
- Leishmaniavirus * genetika izolace a purifikace klasifikace MeSH
- RNA-viry * genetika izolace a purifikace klasifikace MeSH
- Trypanosoma * virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dopisy MeSH
BACKGROUND: Trypanosomatids are parasitic flagellates best known for human pathogens causing sleeping sickness, Chagas disease, and leishmaniasis. RNA viruses infecting these protists have recently gained attention for their role in disease severity. While numerous such viruses have been described in Leishmania and several other trypanosomatid genera, none has previously been documented in the iconic genus Trypanosoma. RESULTS: We report the first discovery and molecular characterization of RNA viruses in trypanosomes, identifying a leishmaniavirus and two narnaviruses in a single strain of Trypanosoma platydactyli, a parasite of the common wall gecko. The leishmaniavirus genome revealed a conserved organization, including a putative ribosomal frameshift site and a hairpin-like secondary structure typical of the genus. Phylogenetic inference indicates that it is closely related to leishmaniaviruses from Old World Leishmania spp., consistent with shared vector ecology. The two narnaviruses have distinct origins, although both cluster with viruses of other trypanosomatids, suggesting historical exchanges among co-infecting parasites. CONCLUSIONS: Our study expands both the known diversity of RNA viruses in trypanosomatids and the range of trypanosomatid genera that host these viruses, providing guidance for future screening. We suggest that vector ecology-particularly feeding behavior-may influence viral acquisition by trypanosomes, explaining the previous absence of viral reports from intensively studied trypanosomes of medical relevance vectored by tsetse flies or kissing bugs. Therefore, overlooked species transmitted by Nematocera represent promising candidates for future viral discovery. This concept extends beyond trypanosomatids, providing a general framework for understanding the conditions that permit viral host switching by viruses among microeukaryotes.
Central European Institute of Technology Masaryk University Brno 60177 Czechia
Department of Parasitology Faculty of Science Charles University Prague 12800 Czechia
Department of Veterinary Medicine University of Bari Valenzano Bari 70010 Italy
Faculty of Science University of South Bohemia České Budějovice 37005 Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice 37005 Czechia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava 71000 Czechia
Zoological Institute Russian Academy of Sciences St Petersburg 199034 Russia
Zobrazit více v PubMed
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11(3):200407. PubMed DOI PMC
Grybchuk D, Kostygov AY, Macedo DH, d’Avila-Levy CM, Yurchenko V. RNA viruses in trypanosomatid parasites: a historical overview. Mem Inst Oswaldo Cruz. 2018;113(4):e170487. PubMed DOI PMC
Tarr PI, Aline RF Jr, Smiley BL, Scholler J, Keithly J, Stuart K. LR1: a candidate RNA virus of PubMed DOI PMC
Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. Characterization of a RNA virus from the parasite PubMed DOI PMC
Guilbride L, Myler PJ, Stuart K. Distribution and sequence divergence of LRV1 viruses among different PubMed DOI
Mayo MA, Martelli GP. Virology division news. Arch Virol. 1993;133(3–4):491–8. DOI
Simmonds P, Adriaenssens EM, Lefkowitz EJ, Oksanen HM, Siddell SG, Zerbini FM, et al. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2024). Arch Virol. 2024;169(11):236. PubMed DOI PMC
Scheffter SM, Ro YT, Chung IK, Patterson JL. The complete sequence of PubMed DOI
Ronet C, Beverley SM, Fasel N. Muco-cutaneous leishmaniasis in the New World: the ultimate subversion. Virulence. 2011;2(6):547–52. PubMed DOI PMC
Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, et al. PubMed DOI PMC
Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, Dobson DE, et al. PubMed DOI PMC
Grybchuk D, Macedo DH, Kleschenko Y, Kraeva N, Lukashev AN, Bates PA, et al. The first non-LRV RNA virus in PubMed DOI PMC
Klocek D, Grybchuk D, Tichá L, Votýpka J, Volf P, Kostygov AY, et al. Evolution of RNA viruses in trypanosomatids: new insights from the analysis of PubMed DOI PMC
Grybchuk D, Akopyants NS, Kostygov AY, Konovalovas A, Lye LF, Dobson DE, et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite PubMed DOI PMC
Klocek D, Grybchuk D, Macedo DH, Galan A, Votýpka J, Schmid-Hempel R, et al. RNA viruses of PubMed DOI
Macedo DH, Grybchuk D, Režnarová J, Votýpka J, Klocek D, Yurchenko T, et al. Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid PubMed DOI PMC
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myšková J, Grybchuk D, et al. PubMed DOI PMC
Lye LF, Akopyants NS, Dobson DE, Beverley SM. A narnavirus-like element from the trypanosomatid protozoan parasite PubMed DOI PMC
Akopyants NS, Lye LF, Dobson DE, Beverley SM. A novel bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc. 2016;4(4):e00715-16. PubMed DOI PMC
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. RNA viruses in PubMed DOI PMC
Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. A narnavirus in the trypanosomatid protist plant pathogen PubMed DOI PMC
Grybchuk D, Galan A, Klocek D, Macedo DH, Wolf YI, Votýpka J, et al. Identification of diverse RNA viruses in PubMed DOI PMC
Kostygov AY, Grybchuk D, Heeren S, Gerasimov ES, Klocek D, Reddy A, et al. A novel strain of PubMed DOI PMC
Fernández-Presas AM, Padilla-Noriega L, Becker I, Robert L, Jiménez JA, Solano S, et al. Enveloped and non-enveloped viral-like particles in PubMed DOI PMC
Molyneux DH, Heywood P. Evidence for the incorporation of virus-like particles into DOI
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, et al. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of PubMed DOI PMC
Catouillard G. Sur un trypanosome du gecko commun de Tunisie (
Procházková M, Füzik T, Grybchuk D, Falginella FL, Podesvová L, Yurchenko V, et al. Capsid structure of PubMed DOI PMC
de Souza MM, Manzine LR, da Silva MVG, Bettini J, Portugal RV, Cruz AK, et al. An improved purification procedure for PubMed DOI PMC
Hajjaran H, Ebadizadeh M, Ataei-Pirkooh A, Mohebali M, Samimi-Rad K, Saberi R, et al. Development of an indirect fluorescent antibody (IFA) assay for the detection of PubMed PMC
Carrion R, Ro YT, Patterson JL. Leishmaniaviruses. In: Mahy BWJ, van Regenmortel MHV, editors. Encyclopedia of virology. San Diego, USA: Academic Press; 2008. p. 220–4.
McNair K, Salamon P, Edwards RA, Segall AM. PRFect: a tool to predict programmed ribosomal frameshifts in prokaryotic and viral genomes. BMC Bioinformatics. 2024;25(1):82. PubMed DOI PMC
Adler S, Theodor O, Dale HH. Investigation on Mediterranean kala azar X–A. Note on DOI
Adler S, Theodor O, Dale HH. Investigations on Mediterranean Kala Azar. IV.–Infection of sandflies with DOI
Dvorák V, Shaw JJ, Volf P. Parasite biology: the vectors. In: Bruschi F, Gradoni L, editors. The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer; 2018. p. 31–77.
Tichá L, Kykalová B, Sádlová J, Gramiccia M, Gradoni L, Volf P. Development of various PubMed DOI PMC
Maroli M, Gramiccia M, Gradoni L, Ready PD, Smith DF, Aquino C. Natural infections of phlebotomine sandflies with Trypanosomatidae in central and south Italy. Trans R Soc Trop Med Hyg. 1988;82(2):227–8. PubMed DOI
Wallbanks KR, Maazoun R, Canning EU, Rioux JA. The identity of PubMed DOI
Simpson L, Holz G Jr. The status of PubMed DOI
Kostygov AY, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. Phylogenetic framework to explore trait evolution in PubMed DOI
Cogni R, Ding SD, Pimentel AC, Day JP, Jiggins FM. PubMed DOI PMC
Feng Y, Gou QY, Yang WH, Wu WC, Wang J, Holmes EC, et al. A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evol. 2022;8(1):veac006. PubMed DOI PMC
NCBI. RNA-Seq of mosquitoes (SRR16905213) — taxonomy analysis. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR16905213&display=analysis. Accessed 25 Jul 2025.
NCBI. RNA-Seq of Drosophila melanogaster: whole fly (SRR14699470) — taxonomy analysis. Sequence Read Archive. https://www.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR14699470&display=analysis. Accessed 25 Jul 2025.
NCBI. RNA-Seq of Drosophila melanogaster: whole fly (SRR14699462) — taxonomy analysis. Sequence Read Archive. https://www.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR14699462&display=analysis. Accessed 25 Jul 2025.
NCBI. RNA-Seq of Drosophila melanogaster: whole fly (SRR14699466) — taxonomy analysis. Sequence Read Archive. https://www.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR14699466&display=analysis. Accessed 25 Jul 2025.
NCBI. RNA-Seq of Drosophila melanogaster: whole fly (SRR14699471) — taxonomy analysis. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR14699471&display=analysis. Accessed 25 Jul 2025.
NCBI. RNA-Seq of Drosophila melanogaster: whole fly (SRR14699467) — taxonomy analysis. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR14699467&display=analysis. Accessed 25 Jul 2025.
Sadiq S, Harvey E, Mifsud JCO, Minasny B, McBratney AB, Pozza LE, et al. Australian terrestrial environments harbour extensive RNA virus diversity. Virology. 2024;593:110007. PubMed DOI
French RK, Anderson SH, Cain KE, Greene TC, Minor M, Miskelly CM, et al. Host phylogeny shapes viral transmission networks in an island ecosystem. Nat Ecol Evol. 2023;7(11):1834–43. PubMed DOI PMC
NCBI. RNA-seq of riverbank sediment (SRR26298342) — taxonomy analysis. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR26298342&display=analysis. Accessed 25 Jul 2025.
NCBI. RNA-seq of Dracophyllum (SRR21676474) — taxonomy analysis. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR21676474&display=analysis. Accessed 25 Jul 2025.
Maudlin I, Holmes PH, Miles MA. The trypanosomiases. Wallingford, UK; Cambridge, MA, USA: CABI Publishing; 2004.
Hoare CA. The trypanosomes of mammals. A zoological monograph. Oxford: Blackwell Scientific Publications; 1972.
Lumsden WHR, Evans DA, editors. Biology of the Kinetoplastida. London; New York: Academic Press; 1976.
Frolov AO, Kostygov AY, Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021;37(6):538–51. PubMed DOI
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: a minireview. Vet Med Sci. 2024;10(5):e1580. PubMed DOI PMC
Romo Bechara N, Wasserberg G, Raymann K. Microbial ecology of sand fly breeding sites: aging and larval conditioning alter the bacterial community composition of rearing substrates. Parasit Vectors. 2022;15(1):265. PubMed DOI PMC
Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. Annu Rev Entomol. 2015;60:351–71. PubMed DOI PMC
Leak SGA. Tsetse biology and ecology: their role in the epidemiology and control of trypanosomiasis. Wallingford, UK: CABI Publishing; 1998.
Solano P, Salou E, Rayaisse JB, Ravel S, Gimonneau G, Traore I, et al. Do tsetse flies only feed on blood? Infect Genet Evol. 2015;36:184–9. PubMed DOI
Sumba AL, Mihok S, Oyieke FA. Mechanical transmission of PubMed
Desquesnes M, Dia ML. Mechanical transmission of PubMed DOI
Desquesnes M, Dia ML. Mechanical transmission of PubMed DOI
Lendzele SS, Abah S, Nguetoum C, Burinyuy KA, Koumba AA, Mavoungou JF. Tabanid-transmitted animal trypanosomiasis in Cameroon: evidence from a study in the tsetse free pastoral zone of Galim. Parasite Epidemiol Control. 2022;18:e00253. PubMed DOI PMC
Muita JW, Bargul JL, Makwatta JO, Ngatia EM, Tawich SK, Masiga DK, et al. PubMed DOI PMC
Barrowman PR. Observations on the transmission, immunology, clinical signs and chemotherapy of dourine ( PubMed
Schaefer CW, Panizzi AR. Heteroptera of economic importance. Boca Raton, FL: CRC Press; 2000.
Otálora-Luna F, Pérez-Sánchez AJ, Sandoval C, Aldana E. Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae). Rev Chil Hist Nat. 2015;88:4. DOI
Schaub GA, Böker CA, Jensen C, Reduth D. Cannibalism and coprophagy are modes of transmission of PubMed DOI
Alves CL, Araujo RN, Gontijo NF, Pereira MH. Importance and physiological effects of hemolymphagy in triatomines (Hemiptera: Reduviidae). J Med Entomol. 2011;48(2):372–81. PubMed DOI
Sandoval CM, Ortiz N, Jaimes D, Lorosa E, Galvao C, Rodriguez O, et al. Feeding behaviour of Belminus ferroae (Hemiptera: Reduviidae), a predaceous Triatominae colonizing rural houses in Norte de Santander, Colombia. Med Vet Entomol. 2010;24(2):124–31. PubMed DOI
Duran P, Sinani E, Depickere S. On triatomines, cockroaches and haemolymphagy under laboratory conditions: new discoveries. Mem Inst Oswaldo Cruz. 2016;111(10):605–13. PubMed DOI PMC
Cerisola JA, Rohwedder R, Bozzini JP, Del Prado CE. PubMed
Costa MC, Moreira CJC, de Oliveira PL, Juberg J, de Castro DP, Genta FA. Sugar feeding in triatomines: a new perspective for controlling the transmission of Chagas disease. Front Physiol. 2024;15:1360255. PubMed DOI PMC
Da Lage JL, Fontenelle A, Filée J, Merle M, Béranger JM, Almeida CE, et al. Evidence that hematophagous triatomine bugs may eat plants in the wild. Insect Biochem Mol Biol. 2024;165:104059. PubMed DOI
Peach DA, Matthews BJ. Sensory mechanisms for the shift from phytophagy to haematophagy in mosquitoes. Curr Opin Insect Sci. 2022;52:100930. PubMed DOI
Ribeiro JMC, Mans BJ, Arcà B. An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol. 2010;40(11):767–84. PubMed DOI PMC
Brotánková A, Fialová M, Čepička I, Brzoňová J, Svobodová M. Trypanosomes of the PubMed DOI PMC
Calzolari M, Rugna G, Clementi E, Carra E, Pinna M, Bergamini F, et al. Isolation of a trypanosome related to PubMed DOI PMC
Ayala SC. Two new trypanosomes from California toads and lizards. J Protozool. 1970;17(3):370–3. DOI
Svobodová M, Volf P, Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med Vet Entomol. 2015;29(4):444–7. PubMed DOI
Ferreira RC, De Souza AA, Freitas RA, Campaner M, Takata CS, Barrett TV, et al. A phylogenetic lineage of closely related trypanosomes (Trypanosomatidae, Kinetoplastida) of anurans and sand flies (Psychodidae, Diptera) sharing the same ecotopes in Brazilian Amazonia. J Eukaryot Microbiol. 2008;55(5):427–35. PubMed DOI
Votýpka J, Obornik M, Volf P, Svobodová M, Lukeš J. PubMed DOI
Chmelová Ľ, Bianchi C, Albanaz ATS, Režnarová J, Wheeler R, Kostygov AY, et al. Comparative analysis of three trypanosomatid catalases of different origin. Antioxidants. 2021;11(1):46. PubMed DOI PMC
Podlipaev SA. Catalogue of world fauna of Trypanosomatidae (Protozoa), vol. 144. Leningrad: Zoologicheskii Institut AN SSSR; 1990. In Russian.
Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, Lukeš J, Yurchenko V. Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus PubMed
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. PubMed DOI PMC
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al. Diversity of trypanosomatids in cockroaches and the description of PubMed DOI
Grybchuk D, Kostygov AY, Yurchenko V. Analysis of PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. PubMed DOI PMC
Quinlan AR. Bedtools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47:11.2.1-.2.34. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. PubMed DOI PMC
Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8. PubMed DOI PMC
Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 2017;45(D1):D170–6. PubMed DOI PMC
Botella L, Jung MH, Rost M, Jung T. Natural populations from the PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martinez JM, Gabaldon T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. PubMed DOI PMC