A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
29267392
PubMed Central
PMC5739487
DOI
10.1371/journal.ppat.1006679
PII: PPATHOGENS-D-17-01808
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- mitochondriální proteiny metabolismus MeSH
- proteom analýza metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- stadia vývoje fyziologie MeSH
- Trypanosoma brucei brucei růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- proteom MeSH
- protozoální proteiny MeSH
Centre for Immunity Infection and Evolution The University of Edinburgh Edinburgh United Kingdom
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Faculty of Sciences Charles University Prague Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, et al. (2013) Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 3: 78 doi: 10.3389/fcimb.2013.00078 PubMed DOI PMC
Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F, et al. (2016) Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19: 837–848. doi: 10.1016/j.chom.2016.05.002 PubMed DOI PMC
Capewell P, Cren-Travaille C, Marchesi F, Johnston P, Clucas C, et al. (2016) The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. Elife; 5:e17717. PubMed PMC
Smith TK, Bringaud F, Nolan DP, Figueiredo LM (2017) Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Res 6. PubMed PMC
Lukeš J, Hashimi H, Verner Z, Číčová Z (2010) The remarkable mitochondrion of trypanosomes and related flagellates In: Structures and Organelles in Pathogenic Protists. de Souza W., editor. 1 ed: Springer-Verlag; Berlin Heidelberg: pp. 227–252.
Vickerman K (1985) Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41: 105–114. PubMed
Vickerman K (1965) Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature 208: 762–766. PubMed
Opperdoes FR, Borst P, Bakker S, Leene W (1977) Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. Eur J Biochem 76: 29–39. PubMed
Nolan DP, Voorheis HP (1992) The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem 209: 207–216. PubMed
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K (2005) The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24: 4029–4040. doi: 10.1038/sj.emboj.7600862 PubMed DOI PMC
Vercesi AE, Docampo R, Moreno SN (1992) Energization-dependent Ca2+ accumulation in Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria. Mol Biochem Parasitol 56: 251–257. PubMed
Lukeš J, Basu S (2015) Fe/S protein biogenesis in trypanosomes—A review. Biochim Biophys Acta 1853: 1481–1492. doi: 10.1016/j.bbamcr.2014.08.015 PubMed DOI
Schnaufer A, Panigrahi AK, Panicucci B, Igo RP Jr., Wirtz E, et al. (2001) An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 291: 2159–2162. doi: 10.1126/science.1058955 PubMed DOI
Read LK, Lukeš J, Hashimi H (2016) Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA 7: 33–51. doi: 10.1002/wrna.1313 PubMed DOI PMC
Huang G, Vercesi AE, Docampo R (2013) Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat Commun 4: 2865 doi: 10.1038/ncomms3865 PubMed DOI PMC
Docampo R, Lukeš J (2012) Trypanosomes and the solution to a 50-year mitochondrial calcium mystery. Trends Parasitol 28: 31–37. doi: 10.1016/j.pt.2011.10.007 PubMed DOI PMC
Gualdron-Lopez M, Brennand A, Hannaert V, Quinones W, Caceres AJ, et al. (2012) When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 42: 1–20. doi: 10.1016/j.ijpara.2011.10.007 PubMed DOI
Gabaldon T, Ginger ML, Michels PA (2016) Peroxisomes in parasitic protists. Mol Biochem Parasitol 209: 35–45. doi: 10.1016/j.molbiopara.2016.02.005 PubMed DOI
Clarkson AB Jr., Grady RW, Grossman SA, McCallum RJ, Brohn FH (1981) Trypanosoma brucei brucei: a systematic screening for alternatives to the salicylhydroxamic acid-glycerol combination. Mol Biochem Parasitol 3: 271–291. PubMed
Grant PT, Fulton JD (1957) The catabolism of glucose by strains of Trypanosoma rhodesiense. Biochem J 66: 242–250. PubMed PMC
van Grinsven KW, Van Den Abbeele J, Van den Bossche P, van Hellemond JJ, Tielens AG (2009) Adaptations in the glucose metabolism of procyclic Trypanosoma brucei isolates from tsetse flies and during differentiation of bloodstream forms. Eukaryot Cell 8: 1307–1311. doi: 10.1128/EC.00091-09 PubMed DOI PMC
Nolan DP, Rolin S, Rodriguez JR, Van Den Abbeele J, Pays E (2000) Slender and stumpy bloodstream forms of Trypanosoma brucei display a differential response to extracellular acidic and proteolytic stress. Eur J Biochem 267: 18–27. PubMed
Mony BM, Matthews KR (2015) Assembling the components of the quorum sensing pathway in African trypanosomes. Mol Microbiol 96: 220–232. doi: 10.1111/mmi.12949 PubMed DOI PMC
Turner CM (1990) The use of experimental artefacts in African trypanosome research. Parasitol Today 6: 14–17. PubMed
Mazet M, Morand P, Biran M, Bouyssou G, Courtois P, et al. (2013) Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis 7: e2587 doi: 10.1371/journal.pntd.0002587 PubMed DOI PMC
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, et al. (2015) Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog 11: e1004689 doi: 10.1371/journal.ppat.1004689 PubMed DOI PMC
Spitznagel D, Ebikeme C, Biran M, Nic a' Bhaird N, Bringaud F, et al. (2009) Alanine aminotransferase of Trypanosoma brucei—a key role in proline metabolism in procyclic life forms. FEBS J 276: 7187–7199. doi: 10.1111/j.1742-4658.2009.07432.x PubMed DOI
Creek DJ, Nijagal B, Kim DH, Rojas F, Matthews KR, et al. (2013) Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother 57: 2768–2779. doi: 10.1128/AAC.00044-13 PubMed DOI PMC
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, et al. (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9: 434–450. doi: 10.1002/pmic.200800477 PubMed DOI PMC
Acestor N, Panigrahi AK, Ogata Y, Anupama A, Stuart KD (2009) Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 9: 5497–5508. doi: 10.1002/pmic.200900354 PubMed DOI PMC
Zíková A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, et al. (2008) Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics 7: 1286–1296. doi: 10.1074/mcp.M700490-MCP200 PubMed DOI PMC
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, et al. (2008) Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics 7: 534–545. doi: 10.1074/mcp.M700430-MCP200 PubMed DOI
Acestor N, Zíková A, Dalley RA, Anupama A, Panigrahi AK, et al. (2011) Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics 10: M110 006908. PubMed PMC
Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, et al. (2013) Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteomics 12: 515–528. doi: 10.1074/mcp.M112.023093 PubMed DOI PMC
Peikert CD, Mani J, Morgenstern M, Kaser S, Knapp B, et al. (2017) Charting organellar importomes by quantitative mass spectrometry. Nat Commun 8: 15272 doi: 10.1038/ncomms15272 PubMed DOI PMC
Zíková A, Panigrahi AK, Uboldi AD, Dalley RA, Handman E, et al. (2008) Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryot Cell 7: 1994–2003. doi: 10.1128/EC.00204-08 PubMed DOI PMC
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD (2009) The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 5: e1000436 doi: 10.1371/journal.ppat.1000436 PubMed DOI PMC
Dejung M, Subota I, Bucerius F, Dindar G, Freiwald A, et al. (2016) Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei. PLoS Pathog 12: e1005439 doi: 10.1371/journal.ppat.1005439 PubMed DOI PMC
Butter F, Bucerius F, Michel M, Cicova Z, Mann M, et al. (2013) Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery. Mol Cell Proteomics 12: 172–179. doi: 10.1074/mcp.M112.019224 PubMed DOI PMC
Urbaniak MD, Martin DM, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12: 2233–2244. doi: 10.1021/pr400086y PubMed DOI PMC
Urbaniak MD, Guther ML, Ferguson MA (2012) Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS ONE 7: e36619 doi: 10.1371/journal.pone.0036619 PubMed DOI PMC
Urbaniak MD, Mathieson T, Bantscheff M, Eberhard D, Grimaldi R, et al. (2012) Chemical proteomic analysis reveals the drugability of the kinome of Trypanosoma brucei. ACS Chem Biol 7: 1858–1865. doi: 10.1021/cb300326z PubMed DOI PMC
Gunasekera K, Wuthrich D, Braga-Lagache S, Heller M, Ochsenreiter T (2012) Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics 13: 556 doi: 10.1186/1471-2164-13-556 PubMed DOI PMC
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, et al. (2015) Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol 315: 73–151. doi: 10.1016/bs.ircmb.2014.11.001 PubMed DOI
Zhang X, Cui J, Nilsson D, Gunasekera K, Chanfon A, et al. (2010) The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development. Nucleic Acids Res 38: 7378–7387. doi: 10.1093/nar/gkq618 PubMed DOI PMC
Sykes SE, Hajduk SL (2013) Dual functions of alpha-ketoglutarate dehydrogenase E2 in the Krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei. Eukaryot Cell 12: 78–90. doi: 10.1128/EC.00269-12 PubMed DOI PMC
Overath P, Czichos J, Haas C (1986) The effect of citrate/cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei. Eur J Biochem 160: 175–182. PubMed
Sykes S, Szempruch A, Hajduk S (2015) The krebs cycle enzyme alpha-ketoglutarate decarboxylase is an essential glycosomal protein in bloodstream African trypanosomes. Eukaryot Cell 14: 206–215. doi: 10.1128/EC.00214-14 PubMed DOI PMC
Štafková J, Mach J, Biran M, Verner Z Bringaud F, et al. (2016) Mitochondrial pyruvate carrier in Trypanosoma brucei. Mol Microbiol 100: 442–456. doi: 10.1111/mmi.13325 PubMed DOI
Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M (2012) Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell 11: 183–193. doi: 10.1128/EC.05282-11 PubMed DOI PMC
Surve SV, Jensen BC, Heestand M, Mazet M, Smith TK, et al. (2016) NADH dehydrogenase of Trypanosoma brucei is important for efficient acetate production in bloodstream forms. Mol Biochem Parasitol 211:57–61. doi: 10.1016/j.molbiopara.2016.10.001 PubMed DOI PMC
Pena-Diaz P, Pelosi L, Ebikeme C, Colasante C, Gao F, et al. (2012) Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen Trypanosoma brucei. J Biol Chem 287: 41861–41874. doi: 10.1074/jbc.M112.404699 PubMed DOI PMC
Gnipová A, Šubrtová K, Panicucci B, Horváth A, Lukeš J, et al. (2015) The ADP/ATP carrier and its relationship to OXPHOS in an ancestral protist, Trypanosoma brucei. Eukaryot Cell 14:297–310. doi: 10.1128/EC.00238-14 PubMed DOI PMC
Miller PG, Klein RA (1980) Effects of oligomycin on glucose utilization and calcium transport in African trypanosomes. J Gen Microbiol 116: 391–396. doi: 10.1099/00221287-116-2-391 PubMed DOI
Bienen EJ, Maturi RK, Pollakis G, Clarkson AB Jr. (1993) Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei. Eur J Biochem 216: 75–80. PubMed
Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase
The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions
ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype