ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype

. 2020 ; 15 (6) : e0234918. [epub] 20200624

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32579605

ZapE/Afg1 is a component of the inner cell membrane of some eubacteria and the inner mitochondrial membrane of eukaryotes. This protein is involved in FtsZ-dependent division of eubacteria. In the yeast and human mitochondrion, ZapE/Afg1 likely interacts with Oxa1 and facilitates the degradation of mitochondrion-encoded subunits of respiratory complexes. Furthermore, the depletion of ZapE increases resistance to apoptosis, decreases oxidative stress tolerance, and impacts mitochondrial protein homeostasis. It remains unclear whether ZapE is a multifunctional protein, or whether some of the described effects are just secondary phenotypes. Here, we have analyzed the functions of ZapE in Trypanosoma brucei, a parasitic protist, and an important model organism. Using a newly developed proximity-dependent biotinylation approach (BioID2), we have identified the inner mitochondrial membrane insertase Oxa1 among three putative interacting partners of ZapE, which is present in two paralogs. RNAi-mediated depletion of both ZapE paralogs likely affected the function of respiratory complexes I and IV. Consistently, we show that the distribution of mitochondrial ZapE is restricted only to organisms with Oxa1, respiratory complexes, and a mitochondrial genome. We propose that the evolutionarily conserved interaction of ZapE with Oxa1, which is required for proper insertion of many inner mitochondrial membrane proteins, is behind the multifaceted phenotype caused by the ablation of ZapE.

Zobrazit více v PubMed

Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014. pp. 335–343. 10.1038/nature12985 PubMed DOI PMC

Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, et al. Ancestral mitochondrial protein secretion machinery. bioRxiv. 2019. 10.1101/790865 DOI

Leger MM, Petrů M, Žárský V, Eme L, Vlček Č, Harding T, et al. An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci. 2015;112: 10239–10246. 10.1073/pnas.1421392112 PubMed DOI PMC

Khalimonchuk O, Bird A, Winge DR. Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J Biol Chem. 2007;282: 17442–17449. 10.1074/jbc.M702379200 PubMed DOI

Marteyn BS, Karimova G, Fenton AK, Gazi AD, West N, Touqui L, et al. ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-Ring dynamics. mBio. 2014;5: e00022–14. 10.1128/mBio.00022-14 PubMed DOI PMC

Cesnekova J, Rodinova M, Hansikova H, Houstek J, Zeman J, Stiburek L. The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem J. 2016;473: 797–804. 10.1042/BJ20151029 PubMed DOI

Cesnekova J, Spacilova J, Hansikova H, Houstek J, Zeman J, Stiburek L. LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis. Oncotarget. 2016;7: 47687–47698. 10.18632/oncotarget.9959 PubMed DOI PMC

Stiller SB, Höpker J, Oeljeklaus S, Schütze C, Schrempp SG, Vent-Schmidt J, et al. Mitochondrial OXA translocase plays a major role in biogenesis of inner-membrane proteins. Cell Metab. 2016;23: 901–908. 10.1016/j.cmet.2016.04.005 PubMed DOI PMC

Germany EM, Zahayko N, Huebsch ML, Fox JL, Prahlad V, Khalimonchuk O. The AAA ATPase Afg1 preserves mitochondrial fidelity and cellular health by maintaining mitochondrial matrix proteostasis. J Cell Sci. 2018;131: jcs219956 10.1242/jcs.219956 PubMed DOI PMC

Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: The complexity of getting U in and taking U out. Wiley Interdisciplinary Reviews: RNA. 2016. pp. 33–51. 10.1002/wrna.1313 PubMed DOI PMC

Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, et al. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 2015;315: 73–151. 10.1016/bs.ircmb.2014.11.001 PubMed DOI

Zíková A, Verner Z, Nenarokova A, Michels PAM, Lukeš J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017;13: e1006679 10.1371/journal.ppat.1006679 PubMed DOI PMC

Peikert CD, Mani J, Morgenstern M, Käser S, Knapp B, Wenger C, et al. Charting organellar importomes by quantitative mass spectrometry. Nat Commun. 2017;8: 15272 10.1038/ncomms15272 PubMed DOI PMC

Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5: 140197 10.1098/rsob.140197 PubMed DOI PMC

Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology. 2018. pp. 880–898. 10.1038/nbt.4201 PubMed DOI PMC

Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. 2012;196: 801–810. 10.1083/jcb.201112098 PubMed DOI PMC

Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot Cell. 2013;12: 356–367. 10.1128/EC.00326-12 PubMed DOI PMC

Dang HQ, Zhou Q, Rowlett VW, Hu H, Lee KJ, Margolin W, et al. Proximity interactions among basal body components in Trypanosoma brucei identify novel regulators of basal body biogenesis and inheritance. MBio. 2017;8: e02120–16. 10.1128/mBio.02120-16 PubMed DOI PMC

Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, et al. An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell. 2016;27: 1188–1196. 10.1091/mbc.E15-12-0844 PubMed DOI PMC

Long S, Jirků M, Ayala FJ, Lukeš J. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci. 2008;105: 13468–13473. 10.1073/pnas.0806762105 PubMed DOI PMC

Downey N, Hines JC, Sinha KM, Ray DS. Mitochondrial DNA ligases of Trypanosoma brucei. Eukaryot Cell. 2005;4: 765–774. 10.1128/EC.4.4.765-774.2005 PubMed DOI PMC

Acestor N, Zíková A, Dalley RA, Anupama A, Panigrahi AK, Stuart KD. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics. 2011;10: M110.006908 10.1074/mcp.M110.006908 PubMed DOI PMC

Saada A, Vogel RO, Hoefs SJ, van den Brand MA, Wessels HJ, Willems PH, et al. Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting Complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet. 2009;84: 718–727. 10.1016/j.ajhg.2009.04.020 PubMed DOI PMC

Cai K, Frederick RO, Tonelli M, Markley JL. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly. J Inorg Biochem. 2018;183: 107–116. 10.1016/j.jinorgbio.2018.03.007 PubMed DOI PMC

Benz C, Kovářová J, Králová-Hromadová I, Pierik AJ, Lukeš J. Roles of the Nfu Fe–S targeting factors in the trypanosome mitochondrion. Int J Parasitol. 2016;46: 641–651. 10.1016/j.ijpara.2016.04.006 PubMed DOI

McAllaster MR, Sinclair-Davis AN, Hilton NA, de Graffenried CL. A unified approach towards Trypanosoma brucei functional genomics using Gibson assembly. Mol Biochem Parasitol. 2016;210: 13–21. 10.1016/j.molbiopara.2016.08.001 PubMed DOI PMC

Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol. 2005. pp. 862–871. 10.1038/nrm1745 PubMed DOI PMC

Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14: 1113–1126. 10.1074/mcp.M114.043083 PubMed DOI PMC

Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33: 3387–3395. 10.1093/bioinformatics/btx431 PubMed DOI

Widmer G, Sullivan S. Genomics and population biology of Cryptosporidium species. Par Immunol. 2012. pp. 61–71. 10.1111/j.1365-3024.2011.01301.x PubMed DOI PMC

Kolli R, Soll J, Carrie C. Plant mitochondrial inner membrane protein insertion. Int J Mol Sci. 2018. pp. 1188–96. 10.3390/ijms19020641 PubMed DOI PMC

Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci. 2015;112: 10177–10184. 10.1073/pnas.1422049112 PubMed DOI PMC

Herrmann JM, Bonnefoy N. Protein export across the inner membrane of mitochondria: The nature of translocated domains determines the dependence on the Oxa1 translocase. J Biol Chem. 2004;279: 2507–2512. 10.1074/jbc.M310468200 PubMed DOI

Koopman WJH, Visch H-J, Verkaart S, van den Heuvel LWPJ, Smeitink JAM, Willems PHGM. Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Physiol. 2005;289: C881–C890. 10.1152/ajpcell.00104.2005 PubMed DOI

Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, et al. The diverged Trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol. 2018;28: 3393–3407. 10.1016/j.cub.2018.09.008 PubMed DOI

Kwong JQ, Henning MS, Starkov AA, Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol. 2007;179: 1163–1177. 10.1083/jcb.200704059 PubMed DOI PMC

Paris Z, Changmai P, Rubio MAT, Zíková A, Stuart KD, Alfonzo JD, et al. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J Biol Chem. 2010;285: 22394–22402. 10.1074/jbc.M109.083774 PubMed DOI PMC

Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot Cell. 2002. pp. 495–502. 10.1128/ec.1.4.495-502.2002 PubMed DOI PMC

Poon SK, Peacock L, Gibson W, Gull K, Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2012;2: 110037 10.1098/rsob.110037 PubMed DOI PMC

Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, et al. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem. 2008;283: 16343–16354. 10.1074/jbc.M709592200 PubMed DOI

Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog. 2017;13: e1006310 10.1371/journal.ppat.1006310 PubMed DOI PMC

Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol. 2014;193: 55–65. 10.1016/j.molbiopara.2014.02.003 PubMed DOI

Trumpower BL, Edwards CA. Purification of a reconstitutively active iron-sulfur protein (oxidation factor) from succinate. cytochrome c reductase complex of bovine heart mitochondria. J Biol Chem. 1979;254: 8697–706. PubMed

Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Mol Biochem Parasitol. 2011;175: 196–200. 10.1016/j.molbiopara.2010.11.003 PubMed DOI

Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep. 2017;7: 11674 10.1038/s41598-017-12021-2 PubMed DOI PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26: 1367–1372. 10.1038/nbt.1511 PubMed DOI

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods. 2016. pp. 731–740. 10.1038/nmeth.3901 PubMed DOI

Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44: D447–D456. 10.1093/nar/gkv1145 PubMed DOI PMC

Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol. 2008;4: e1000069 10.1371/journal.pcbi.1000069 PubMed DOI PMC

Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics. 2016;32: 1933–1942. 10.1093/bioinformatics/btw108 PubMed DOI PMC

Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35: 518–522. 10.1093/molbev/msx281 PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14: 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...