A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
MR/P009018/1
Medical Research Council - United Kingdom
MR/N010558/1
Medical Research Council - United Kingdom
203134/Z/16/Z
Wellcome Trust - United Kingdom
MR/K008749/1
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
PubMed
28388690
PubMed Central
PMC5397073
DOI
10.1371/journal.ppat.1006310
PII: PPATHOGENS-D-16-01055
Knihovny.cz E-zdroje
- MeSH
- buněčný cyklus fyziologie MeSH
- kinetoplastová DNA genetika MeSH
- leucylaminopeptidasa genetika metabolismus MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie metabolismus ultrastruktura MeSH
- protozoální DNA genetika MeSH
- protozoální proteiny metabolismus MeSH
- replikace DNA fyziologie MeSH
- Trypanosoma brucei brucei genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinetoplastová DNA MeSH
- leucylaminopeptidasa MeSH
- mitochondriální DNA MeSH
- protozoální DNA MeSH
- protozoální proteiny MeSH
The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks.
Canadian Institute for Advanced Research Toronto ON Canada
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
School of Life Sciences University of Dundee Dundee United Kingdom
Zobrazit více v PubMed
Jensen RE, Englund PT. Network News: The Replication of Kinetoplast DNA. Annu Rev Microbiol. 2012;66: 473–491. doi: 10.1146/annurev-micro-092611-150057 PubMed DOI
Ogbadoyi EO, Robinson DR, Gull K. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell. 2003; 14:1769–1779. doi: 10.1091/mbc.E02-08-0525 PubMed DOI PMC
Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci. 1990; 95:49–57. PubMed
Dean S, Gould MK, Dewar CE, Schnaufer AC. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci USA. 2013; 110:14741–14746. doi: 10.1073/pnas.1305404110 PubMed DOI PMC
Roy Chowdhury A, Bakshi R, Wang J, Yildirir G, Liu B, Pappas-Brown V, et al. The killing of African trypanosomes by ethidium bromide. PLoS Pathog. 2010; 6:e1001226–14. doi: 10.1371/journal.ppat.1001226 PubMed DOI PMC
Shlomai J. The structure and replication of kinetoplast DNA. Curr Mol Med. 2004; 4:623–647. PubMed
Simpson L. The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annu Rev Microbiol. 1987; 41:363–382. doi: 10.1146/annurev.mi.41.100187.002051 PubMed DOI
Aphasizhev R, Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 2014; 100:125–131. doi: 10.1016/j.biochi.2014.01.003 PubMed DOI PMC
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, et al. Malleable Mitochondrion of Trypanosoma brucei. 2015; 315:73–151. doi: 10.1016/bs.ircmb.2014.11.001 PubMed DOI
Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. WIREs RNA. 2015. PubMed PMC
Koslowsky D, Sun Y, Hindenach J, Theisen T, Lucas J. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014; 42:1873–1886. doi: 10.1093/nar/gkt973 PubMed DOI PMC
Shapiro TA. Kinetoplast DNA maxicircles: networks within networks. Proc Natl Acad Sci USA. 1993; 90:7809–7813. PubMed PMC
Rauch CA, Pérez-Morga D, Cozzarelli NR, Englund PT. The absence of supercoiling in kinetoplast DNA minicircles. EMBO J. 1993; 12:403–411. PubMed PMC
Chen J, Rauch CA, White JH, Englund PT, Cozzarelli NR. The topology of the kinetoplast DNA network. Cell. 1995; 80:61–69. PubMed
Melendy T, Sheline C, Ray DS. Localization of a type II DNA topoisomerase to two sites at the periphery of the kinetoplast DNA of Crithidia fasciculata. Cell. 1988; 55:1083–1088. PubMed
Drew ME, Englund PT. Intramitochondrial location and dynamics of Crithidia fasciculata kinetoplast minicircle replication intermediates. J Cell Biol. 2001; 153:735–744. PubMed PMC
Kitchin PA, Klein VA, Fein BI, Englund PT. Gapped minicircles. A novel replication intermediate of kinetoplast DNA. J Biol Chem. 1984; 259:15532–15539. PubMed
Liu B, Wang J, Yildirir G, Englund PT. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments. PLoS Pathog. 2009; 5:e1000589 doi: 10.1371/journal.ppat.1000589 PubMed DOI PMC
Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell. 2002; 10:175–186. PubMed
Bruhn DF, Sammartino MP, Klingbeil MM. Three mitochondrial DNA polymerases are essential for kinetoplast DNA replication and survival of bloodstream form Trypanosoma brucei. Eukaryot Cell. 2011; 10:734–743. doi: 10.1128/EC.05008-11 PubMed DOI PMC
Downey N, Hines JC, Sinha KM, Ray DS. Mitochondrial DNA ligases of Trypanosoma brucei. Eukaryot Cell. 2005; 4:765–774. doi: 10.1128/EC.4.4.765-774.2005 PubMed DOI PMC
Liu B, Yildirir G, Wang J, Tolun G, Griffith JD, Englund PT. TbPIF1, a Trypanosoma brucei mitochondrial DNA helicase, is essential for kinetoplast minicircle replication. J Biol Chem. 2010; 285:7056–7066. doi: 10.1074/jbc.M109.084038 PubMed DOI PMC
Pérez-Morga D, Englund PT. The structure of replicating kinetoplast DNA networks. J Cell Biol. 1993; 123:1069–1079. PubMed PMC
Ferguson ML, Torri AF, Pérez-Morga D, Ward DC, Englund PT. Kinetoplast DNA replication: mechanistic differences between Trypanosoma brucei and Crithidia fasciculata. J Cell Biol. 1994; 126:631–639. PubMed PMC
Guilbride DL, Englund PT. The replication mechanism of kinetoplast DNA networks in several trypanosomatid species. J Cell Sci. 1998; 111:675–679. PubMed
Pérez-Morga DL, Englund PT. The attachment of minicircles to kinetoplast DNA networks during replication. Cell. 1993; 74:703–711. PubMed
Liu B, Wang J, Yaffe N, Lindsay ME, Zhao Z, Zick A, et al. Trypanosomes have six mitochondrial DNA helicases with one controlling kinetoplast maxicircle replication. Mol Cell 2009; 35:490–501. doi: 10.1016/j.molcel.2009.07.004 PubMed DOI PMC
Gluenz E, Shaw MK, Gull K. Structural asymmetry and discrete nucleic acid subdomains in the Trypanosoma brucei kinetoplast. Mol Microbiol. 2007; 64:1529–1539. doi: 10.1111/j.1365-2958.2007.05749.x PubMed DOI PMC
Gluenz E, Povelones ML, Englund PT, Gull K. The kinetoplast duplication cycle in Trypanosoma brucei is orchestrated by cytoskeleton-mediated cell morphogenesis. Mol Cell Biol. 2011; 31:1012–1021. doi: 10.1128/MCB.01176-10 PubMed DOI PMC
Rawlings ND, Barrett AJ. Introduction: Metallopeptidases and Their Clans. Handbook of Proteolytic Enzymes. 2012. pp. 325–370.
Byrd CM, Bolken TC. Leucyl Aminopeptidase (Animal). Handbook of Proteolytic Enzymes. 2012. pp. 1465–1470.
Narváez-Vásquez J, Tu C-J, Park S-Y, Walling LL. Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves. Planta. 2008; 227:341–351. doi: 10.1007/s00425-007-0621-0 PubMed DOI
Jarocki VM, Santos J, Tacchi JL, Raymond BBA, Deutscher AT, Jenkins C, et al. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol. 2015; 5:140175–140175. doi: 10.1098/rsob.140175 PubMed DOI PMC
Deng C, Sun J, Li X, Wang L, Hu X, Wang X, et al. Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis. Mol Biol Rep. 2012; 39:9817–9826. doi: 10.1007/s11033-012-1848-9 PubMed DOI
Charlier D, Kholti A, Huysveld N, Gigot D, Maes D, Thia-Toong TL, et al. Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase. J Mol Biol. 2000; 302:411–426. doi: 10.1006/jmbi.2000.4067 PubMed DOI
Ishizaki T, Tosaka A, Nara T, Aoshima N, Namekawa S, Watanabe K, et al. Leucine aminopeptidase during meiotic development. Eur J Biochem. 2002; 269:826–832. PubMed
Carroll RK, Robison TM, Rivera FE, Davenport JE, Jonsson I- M, Florczyk D, et al. Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect. 2012; 14:989–999. doi: 10.1016/j.micinf.2012.04.013 PubMed DOI PMC
Morty RE, Morehead J. Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J Biol Chem. 2002; 277:26057–26065. doi: 10.1074/jbc.M202779200 PubMed DOI
Lee Y-R, Na B-K, Moon E-K, Song S-M, Joo S-Y, Kong H-H, et al. Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS ONE. 2015; 10:e0129884 doi: 10.1371/journal.pone.0129884 PubMed DOI PMC
Fowler JH, Narváez-Vásquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL. Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell. 2009; 21:1239–1251. doi: 10.1105/tpc.108.065029 PubMed DOI PMC
Scranton MA, Yee A, Park S-Y, Walling LL. Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J Biol Chem. 2012; 287:18408–18417. doi: 10.1074/jbc.M111.309500 PubMed DOI PMC
Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, et al. A 52-kDa leucyl aminopeptidase from Treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem. 2008; 283:19351–19358. doi: 10.1074/jbc.M801034200 PubMed DOI PMC
Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999; 24:34–36. PubMed
Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002; 18:298–305. PubMed
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996; 241: 779–786. PubMed
Emanuelsson O, Brunak S, Heijne von G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007; 2:953–971. doi: 10.1038/nprot.2007.131 PubMed DOI
Robinson DR, Gull K. Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature. 1991; 352:731–733. doi: 10.1038/352731a0 PubMed DOI
Ripley BD. Modelling spatial patterns. J R Stat Soc Series B Stat Methodol. 1977;39: 172–212.
Lagache T, Lang G, Sauvonnet N, Olivo-Marin J-C. Analysis of the spatial organization of molecules with robust statistics. PLoS ONE. 2013; 8:e80914–7. doi: 10.1371/journal.pone.0080914 PubMed DOI PMC
Týč J, Klingbeil MM, Lukeš J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio. 2015;6: e02425–14. doi: 10.1128/mBio.02425-14 PubMed DOI PMC
Concepción-Acevedo J, Luo J, Klingbeil MM. Dynamic localization of Trypanosoma brucei mitochondrial DNA polymerase ID. Eukaryot Cell. 2012; 11:844–855. doi: 10.1128/EC.05291-11 PubMed DOI PMC
Povelones ML. Beyond replication: division and segregation of mitochondrial DNA in kinetoplastids. Mol Biochem Parasitol. 2014; 196:53–60. doi: 10.1016/j.molbiopara.2014.03.008 PubMed DOI
Cadavid-Restrepo G, Gastardelo TS, Faudry E, de Almeida H, Bastos IMD, Negreiros RS, et al. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases. BMC Biochem. 2011; 12:46 doi: 10.1186/1471-2091-12-46 PubMed DOI PMC
Benz C, Clucas C, Mottram JC, Hammarton TC. Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin. PLoS ONE. 2012; 7:e30367–12. doi: 10.1371/journal.pone.0030367 PubMed DOI PMC
Motyka SA, Drew ME, Yildirir G, Englund PT. Overexpression of a cytochrome b5 reductase-like protein causes kinetoplast DNA loss in Trypanosoma brucei. J Biol Chem. 2006; 281:18499–18506. doi: 10.1074/jbc.M602880200 PubMed DOI
Zhao Z, Lindsay ME, Roy Chowdhury A, Robinson DR, Englund PT. p166, a link between the trypanosome mitochondrial DNA and flagellum, mediates genome segregation. EMBO J. 2008; 27:143–154. doi: 10.1038/sj.emboj.7601956 PubMed DOI PMC
Wang J, Englund PT, Jensen RE. TbPIF8, a Trypanosoma brucei protein related to the yeast Pif1 helicase, is essential for cell viability and mitochondrial genome maintenance. Mol Microbiol. 2012; 83:471–485. doi: 10.1111/j.1365-2958.2011.07938.x PubMed DOI PMC
Beck K, Acestor N, Schulfer A, Anupama A, Carnes J, Panigrahi AK, et al. Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. Eukaryot Cell. 2013; 12:970–978. doi: 10.1128/EC.00352-12 PubMed DOI PMC
Hines JC, Ray DS. A second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNA replication in Trypanosoma brucei. Eukaryot Cell. 2011; 10:445–454. doi: 10.1128/EC.00308-10 PubMed DOI PMC
Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, et al. Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J Cell Sci. 2010; 123:2884–2891. doi: 10.1242/jcs.074161 PubMed DOI PMC
Ploubidou A, Robinson DR, Docherty RC, Ogbadoyi EO, Gull K. Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis. J Cell Sci. 1999; 112:4641–4650. PubMed
Colloms SD, Bath J, Sherratt DJ. Topological selectivity in Xer site-specific recombination. Cell. 1997; 88:855–864. PubMed
Strater N, Sherratt DJ, Colloms SD. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J. 1999; 18:4513–4522. doi: 10.1093/emboj/18.16.4513 PubMed DOI PMC
McCulloch R, Burke ME, Sherratt DJ. Peptidase activity of Escherichia coli aminopeptidase A is not required for its role in Xer site-specific recombination. Mol Microbiol. 1994; 12:241–251. PubMed
Reijns M, Lu Y, Leach S, Colloms SD. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol. 2005; 57:927–941. doi: 10.1111/j.1365-2958.2005.04716.x PubMed DOI
Zhang S, Yang X, Shi H, Li M, Xue Q, Ren H, et al. Overexpression of leucine aminopeptidase 3 contributes to malignant development of human esophageal squamous cell carcinoma. J Mol Histol. 2014; 45:283–292. doi: 10.1007/s10735-014-9566-3 PubMed DOI
Cappiello M, Lazzarotti A, Buono F, Scaloni A, D'Ambrosio C, Amodeo P, et al. New role for leucyl aminopeptidase in glutathione turnover. Biochem J. 2004; 378:35–44. doi: 10.1042/BJ20031336 PubMed DOI PMC
Vincent IM, Creek DJ, Burgess K, Woods DJ, Burchmore RJS, Barrett MP. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis. 2012; 6:e1618 doi: 10.1371/journal.pntd.0001618 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. PubMed
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010; 27:221–224. doi: 10.1093/molbev/msp259 PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30:1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol. 2002; 125:211–216. PubMed
Poon SK, Peacock L, Gibson W, Gull K, Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2012; 2. PubMed PMC
Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, et al. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol. 2007; 154:103–109. doi: 10.1016/j.molbiopara.2007.03.012 PubMed DOI PMC
Oberholzer M, Morand S, Kunz S, Seebeck T. A vector series for rapid PCR-mediated c-terminal in situ tagging of Trypanosoma brucei genes. Mol Biochem Parasitol. 2006;145: 117–120. doi: 10.1016/j.molbiopara.2005.09.002 PubMed DOI
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015; 5:140197–140197. doi: 10.1098/rsob.140197 PubMed DOI PMC
Alibu VP, Storm L, Haile S, Clayton C, Horn D. A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei. Mol Biochem Parasitol. 2005; 139: 75–82. doi: 10.1016/j.molbiopara.2004.10.002 PubMed DOI
Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, et al. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem. 2005; 280:2429–2438. doi: 10.1074/jbc.M405933200 PubMed DOI
Colasante C, Peña Diaz P, Clayton C, Voncken F. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation. Mol Biochem Parasitol. 2009; 167:104–117. doi: 10.1016/j.molbiopara.2009.05.004 PubMed DOI
Sunter JD, Benz C, Andre J, Whipple S, McKean PG, Gull K, et al. Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions. J Cell Sci. 2015; 128:3117–3130. doi: 10.1242/jcs.171645 PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9:671–675. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9:676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Hashimi H, McDonald L, Stríbrná E, Lukeš J. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis. J Biol Chem. 2013; 288: 26914–26925. doi: 10.1074/jbc.M113.495119 PubMed DOI PMC
Bessat M, Ersfeld K. Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in Trypanosoma brucei. Mol Microbiol. 2009; 71:1371–1385. doi: 10.1111/j.1365-2958.2009.06611.x PubMed DOI
Hashimi H, Zíková A, Panigrahi AK, Stuart KD, Lukeš J. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA. 2008;14: 970–980. doi: 10.1261/rna.888808 PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29. PubMed PMC
Carnes J, Trotter JR, Ernst NL, Steinberg A, Stuart K. An essential RNase III insertion editing endonuclease in Trypanosoma brucei. Proc Natl Acad Sci USA. 2005; 102:16614–16619. doi: 10.1073/pnas.0506133102 PubMed DOI PMC
Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003; 339:62–66. PubMed
Identification and Validation of Compounds Targeting Leishmania major Leucyl-Aminopeptidase M17
ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype
Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei