Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei

. 2018 Oct ; 14 (10) : e1007326. [epub] 20181022

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30346997
Odkazy

PubMed 30346997
PubMed Central PMC6211773
DOI 10.1371/journal.ppat.1007326
PII: PPATHOGENS-D-17-02650
Knihovny.cz E-zdroje

Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1.

Zobrazit více v PubMed

Wächtershäuser G. On the chemistry and evolution of the pioneer organism. Chem Biodivers. 2007; 4:584–602. 10.1002/cbdv.200790052 PubMed DOI

Beinert H. Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem. 2000; 5:2–15. 10.1007/s007750050002 PubMed DOI

Lill R. and Function biogenesis of iron–sulphur proteins. Nature. 2009; 460:831–838. 10.1038/nature08301 PubMed DOI

Paul VD, Lill R. Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. BBA-Molecular Cell Research. 2015; 1853:1528–1539. 10.1016/j.bbamcr.2014.12.018 PubMed DOI

Braymer JJ, Lill R. Iron–sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem. 2017; 292:12754–12763. 10.1074/jbc.R117.787101 PubMed DOI PMC

Couturier J, Touraine B, Briat J-F, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front Plant Sci. Frontiers; 2013; 4:1–22. 10.3389/fpls.2013.00259 PubMed DOI PMC

Roy A. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J. 2003; 22:4826–4835. 10.1093/emboj/cdg455 PubMed DOI PMC

Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol. 2015; 94:280–291. 10.1016/j.ejcb.2015.05.002 PubMed DOI

Netz DJA, Stümpfig M, Doré C, Mühlenhoff U, Pierik AJ, Lill R. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol. 2010; 6:758–765. 10.1038/nchembio.432 PubMed DOI

Netz DJA, Pierik AJ, Stümpfig M, Mühlenhoff U, Lill R. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat Chem Biol. 2007; 3:278–286. 10.1038/nchembio872 PubMed DOI

Netz DJA, Pierik AJ, Stumpfig M, Bill E, Sharma AK, Pallesen LJ, et al. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem. 2012; 287:12365–12378. 10.1074/jbc.M111.328914 PubMed DOI PMC

Balk J, Pierik AJ, Netz DJA, Mühlenhoff U, Lill R. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J. 2004; 23:2105–2115. 10.1038/sj.emboj.7600216 PubMed DOI PMC

Gari K, Ortiz AML, Borel V, Flynn H, Skehel JM, Boulton SJ. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science. 2012; 337:243–245. 10.1126/science.1219664 PubMed DOI

Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJA, et al. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science. 2012; 337:195–199. 10.1126/science.1219723 PubMed DOI PMC

Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rösser R, et al. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab. 2013; 18:187–198. 10.1016/j.cmet.2013.06.015 PubMed DOI PMC

WHO | Epidemiological situation. WHO. World Health Organization. Available: http://www.who.int/trypanosomiasis_african/country/en/

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. Kirk M, editor. PLoS ONE. 2012; 7:e35671 10.1371/journal.pone.0035671 PubMed DOI PMC

WHO | Chagas disease (American trypanosomiasis). WHO. World Health Organization. Available: http://www.who.int/mediacentre/factsheets/fs340/en/

Auty H, Torr SJ, Michoel T, Jayaraman S, Morrison LJ. Cattle trypanosomosis: the diversity of trypanosomes and implications for disease epidemiology and control. Rev—Off Int Epizoot. 2015; 34:587–598. doi: 10.20506/rst.34.2.2382 PubMed DOI

Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012; 59:429–514. 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC

Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999; 99:89–101. 10.1016/S0166-6851(99)00002-X PubMed DOI

Clayton CE. Genetic manipulation of kinetoplastida. Parasitol Today. 1999; 15:372–378. 10.1016/S0169-4758(99)01498-2 PubMed DOI

LaCount DJ, Bruse S, Hill KL, Donelson JE. Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. Mol Biochem Parasitol. 2000; 111:67–76. 10.1016/S0166-6851(00)00300-5 PubMed DOI

Alibu VP, Storm L, Haile S, Clayton C, Horn D. A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei. Mol Biochem Parasitol. 2005; 139:75–82. 10.1016/j.molbiopara.2004.10.002 PubMed DOI

Basu S, Netz DJ, Haindrich AC, Herlerth N, Lagny TJ, Pierik AJ, et al. Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei. Mol Microbiol. 2014; 93:897–910. 10.1111/mmi.12706 PubMed DOI

Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. BBA—General Subjects. 2016; 1860:363–370. 10.1016/j.bbagen.2015.10.027 PubMed DOI

Lukeš J, Basu S. Fe/S protein biogenesis in trypanosomes—A review. Biochim Biophys Acta. 2015; 1853:1481–1492. 10.1016/j.bbamcr.2014.08.015 PubMed DOI

Tsaousis AD, Gentekaki E, Eme L, Gaston D, Roger AJ. Evolution of the cytosolic iron-sulfur cluster assembly machinery in Blastocystis species and other microbial eukaryotes. Eukaryot Cell. 2014; 13:143–153. 10.1128/EC.00158-13 PubMed DOI PMC

Hannaert V, Albert MA, Rigden DJ, Giotto M, Thiemann O, Garratt RC, et al. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Eur J Biochem. 2003; 270:3205–3213. 10.1046/j.1432-1033.2003.03692.x PubMed DOI

Richmond GS, Smith TK. A novel phospholipase from Trypanosoma brucei. Mol Microbiol. 2007; 63:1078–1095. 10.1111/j.1365-2958.2006.05582.x PubMed DOI PMC

Chaudhuri M. and Biochemical molecular properties of the Trypanosoma brucei alternative oxidase. Mol Biochem Parasitol. 1998; 95:53–68. 10.1016/S0166-6851(98)00091-7 PubMed DOI

Saas J, Ziegelbauer K, Haeseler von A, Fast B, Boshart M. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J Biol Chem. 2000; 275:2745–2755. 10.1074/jbc.275.4.2745 PubMed DOI

van Weelden SWH, Fast B, Vogt A, van der Meer P, Saas J, van Hellemond JJ, et al. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem. 2003; 278:12854–12863. 10.1074/jbc.M213190200 PubMed DOI

Balk J, Pilon M. Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci. 2011;16: 218–226. 10.1016/j.tplants.2010.12.006 PubMed DOI

Netz DJA, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol. 2012; 8:125–132. 10.1038/nchembio.721 PubMed DOI PMC

Luo D, Bernard DG, Balk J, Hai H, Cui X. The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. Plant Cell. 2012; 24:4135–4148. 10.1105/tpc.112.102608 PubMed DOI PMC

Fuss JO, Tsai C-L, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim Biophys Acta. 2015; 1853:1253–1271. 10.1016/j.bbamcr.2015.01.018 PubMed DOI PMC

Lentz DJ, Henderson GH, Eyring EM. Kinetics of aqueous iron (III) complexation by desferrioxamine B. Mol Pharmacol. 1973; 9:514–519. PubMed

Tenopoulou M, Doulias P-T, Barbouti A, Brunk U, Galaris D. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J. 2005; 387:703–710. 10.1042/BJ20041650 PubMed DOI PMC

Kurz T, Gustafsson B, Brunk UT. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 2006; 273:3106–3117. 10.1111/j.1742-4658.2006.05321.x PubMed DOI

Macdonald RL, Weir B. Hematology. In: Macdonald RL, Weir B, editors. Cerebral Vasospasm. 2001.

Neuvonen PJ. Interactions with the absorption of tetracyclines. Drugs. 1976; 11:45–54. 10.2165/00003495-197611010-00004 PubMed DOI

Pierik AJ, Netz DJA, Lill R. Analysis of iron–sulfur protein maturation in eukaryotes. Nat Protoc. 2009; 4:753–766. 10.1038/nprot.2009.39 PubMed DOI

Rouault TA, Maio N. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem. 2017; 292:12744–12753. 10.1074/jbc.R117.789537 PubMed DOI PMC

Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, et al. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol. 2016; 102:701–714. 10.1111/mmi.13487 PubMed DOI

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38:D457–62. 10.1093/nar/gkp851 PubMed DOI PMC

Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005; 309:416–422. 10.1126/science.1112642 PubMed DOI

Valasatava Y, Rosato A, Banci L, Andreini C. MetalPredator: a web server to predict iron–sulfur cluster binding proteomes. Bioinformatics. 2016; 32:2850–2852. 10.1093/bioinformatics/btw238 PubMed DOI

Rouault TA. Iron-sulfur proteins hiding in plain sight. Nat Chem Biol. 2015; 11:442–445. 10.1038/nchembio.1843 PubMed DOI

Schimanski B, Nguyen TN, Günzl A. Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell. 2005; 4:1942–1950. 10.1128/EC.4.11.1942-1950.2005 PubMed DOI PMC

Field MC, Adung'a V, Obado S, Chait BT, Rout MP. Proteomics on the rims: insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes. Parasitology. 2012; 139:1158–1167. 10.1017/S0031182011002125 PubMed DOI PMC

Tsaousis AD, Nývltová E, Sutak R, Hrdy I, Tachezy J. A nonmitochondrial hydrogen production in Naegleria gruberi. Genome Biol Evol. 2014; 6:792–799. 10.1093/gbe/evu065 PubMed DOI PMC

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10:845–858. 10.1038/nprot.2015.053 PubMed DOI PMC

Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4: 363–371. 10.1038/nprot.2009.2 PubMed DOI

Fournier D, Palidwor GA, Shcherbinin S, Szengel A, Schaefer MH, Perez-Iratxeta C, et al. Functional and genomic analyses of alpha-solenoid proteins. PLoS ONE. 2013; 8:e79894 10.1371/journal.pone.0079894 PubMed DOI PMC

Groves MR, Barford D. Topological characteristics of helical repeat protein. Curr Opin Struct Biol. 1999; 9:383–389. 10.1016/S0959-440X(99)80052-9 PubMed DOI

Queimado L. Cloning the human and mouse MMS19 genes and functional complementation of a yeast mms19 deletion mutant. Nucleic Acids Res. 2001; 29:1884–1891. 10.1093/nar/29.9.1884 PubMed DOI PMC

Odermatt DC, Gari K. The CIA targeting complex is highly regulated and provides two distinct binding sites for client iron-sulfur proteins. Cell Rep. 2017; 18:1434–1443. 10.1016/j.celrep.2017.01.037 PubMed DOI PMC

Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017; 12:255–278. 10.1038/nprot.2016.169 PubMed DOI PMC

Deng L, Guan J, Wei X, Yi Y, Zhang QC, Zhou S. Boosting prediction performance of protein–protein interaction hot spots by using structural neighborhood properties. J Comput Biol 2013;20: 878–891. 10.1089/cmb.2013.0083 PubMed DOI PMC

Deng L, Zhang QC, Chen Z, Meng Y, Guan J, Zhou S. PredHS: a web server for predicting protein–protein interaction hot spots by using structural neighborhood properties. Nucleic Acids Res. 2014; 42:W290–W295. 10.1093/nar/gku437 PubMed DOI PMC

Ali V, Nozaki T. Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. Advances in Parasitology. 2013. pp. 1–92. 10.1016/B978-0-12-407705-8.00001-X PubMed DOI

Anwar S, Dikhit MR, Singh KP, Kar RK, Zaidi A, Sahoo GC, et al. Interaction between Nbp35 and Cfd1 proteins of cytosolic fe-s cluster assembly reveals a stable complex formation in Entamoeba histolytica. PLoS ONE. 2014; 9:e108971–13. 10.1371/journal.pone.0108971 PubMed DOI PMC

Duan C-G, Wang X, Tang K, Zhang H, Mangrauthia SK, Lei M, et al. MET18 connects the cytosolic iron-sulfur cluster assembly pathway to active dna demethylation in Arabidopsis. PLoS Genet. 2015; 11:e1005559 10.1371/journal.pgen.1005559 PubMed DOI PMC

Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, et al. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun. 2016; 8:1–12. 10.1038/ncomms13932 PubMed DOI PMC

Han Y-F, Huang H-W, Li L, Cai T, Chen S, He X-J. The cytosolic iron-sulfur cluster assembly protein MMS19 regulates transcriptional gene silencing, DNA repair, and flowering time in Arabidopsis. PLoS ONE. 2015; 10:e0129137 10.1371/journal.pone.0129137 PubMed DOI PMC

van Wietmarschen N, Moradian A, Morin GB, Lansdorp PM, Uringa EJ. The mammalian proteins MMS19, MIP18, and ANT2 are involved in cytoplasmic iron-sulfur cluster protein assembly. J Biol Chem. 2012; 287:43351–43358. 10.1074/jbc.M112.431270 PubMed DOI PMC

Li F, Martienssen R, Cande WZ. Coordination of DNA replication and histone modification by the Rik1–Dos2 complex. Nature. 2011; 475:244–248. 10.1038/nature10161 PubMed DOI PMC

Fast B, Kremp K, Boshart M, Steverding D. Iron-dependent regulation of transferrin receptor expression in Trypanosoma brucei. Biochem J. 1999; 342:691–696. 10.1042/bj3420691 PubMed DOI PMC

Long S, Changmai P, Tsaousis AD, Skalický T, Verner Z, Wen Y-Z, et al. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol Microbiol. 2011; 81:1403–1418. 10.1111/j.1365-2958.2011.07769.x PubMed DOI

Long S, Jirků M, Ayala FJ, Lukeš J. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci USA. 2008; 105:13468–13473. 10.1073/pnas.0806762105 PubMed DOI PMC

Changmai P, Horáková E, Long S, Černotíková-Stříbrná E, McDonald LM, Bontempi EJ, et al. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol Microbiol. 2013; 89:135–151. 10.1111/mmi.12264 PubMed DOI

Horáková E, Changmai P, Paris Z, Salmon D, Lukeš J. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei. FEBS J. 2015; 282:4157–4175. 10.1111/febs.13411 PubMed DOI

Taylor MC, McLatchie AP, Kelly JM. Evidence that transport of iron from the lysosome to the cytosol in African trypanosomes is mediated by a mucolipin orthologue. Mol Microbiol. 2013; 89:420–432. 10.1111/mmi.12285 PubMed DOI PMC

Stijlemans B, Beschin A, Magez S, Van Ginderachter JA, De Baetselier P. Iron Homeostasis and Trypanosoma brucei associated immunopathogenicity development: a battle/quest for iron. BioMed Res Int. 2015;2015: 819389 10.1155/2015/819389 PubMed DOI PMC

Taylor MC, Kelly JM. Iron metabolism in trypanosomatids, and its crucial role in infection. Parasitology. 2010; 137:899–917. 10.1017/S0031182009991880 PubMed DOI

Outten FW. A stress-responsive Fe-S cluster biogenesis system in bacteria–the suf operon of Gammaproteobacteria. In: De Gruyter (ed.) Iron-sulfur clusters in chemistry and biology. 10.1515/9783110308426.297 DOI

Dlouhy AC, Outten CE. The iron metallome in eukaryotic organisms Metallomics and the Cell. Springer; Netherlands; 2012. pp. 241–278. 10.1007/978-94-007-5561-1_8 PubMed DOI PMC

Compe E, Egly J-M. Nucleotide excision repair and transcriptional regulation: TFIIH and beyond. Annu Rev Biochem. 2016; 85:265–290. 10.1146/annurev-biochem-060815-014857 PubMed DOI

Badjatia N, Nguyen TN, Lee JH, Günzl A. Trypanosoma brucei harbours a divergent XPB helicase paralogue that is specialized in nucleotide excision repair and conserved among kinetoplastid organisms. Mol Microbiol. 2013; 90:1293–1308. 10.1111/mmi.12435 PubMed DOI PMC

Machado CR, Vieira-da-Rocha JP, Mendes IC, Rajão MA, Marcello L, Bitar M, et al. Nucleotide excision repair in Trypanosoma brucei: specialization of transcription-coupled repair due to multigenic transcription. Mol Microbiol. 2014; 92:756–776. 10.1111/mmi.12589 PubMed DOI PMC

Vashisht AA, Yu CC, Sharma T, Ro K, Wohlschlegel JA. The association of the Xeroderma pigmentosum group D DNA helicase (XPD) with transcription factor IIH is regulated by the cytosolic iron-sulfur cluster assembly pathway. J Biol Chem. 2015; 290:14218–14225. 10.1074/jbc.M115.650762 PubMed DOI PMC

Seki M, Takeda Y, Iwai K, Tanaka K. IOP1 protein is an external component of the human cytosolic iron-sulfur cluster assembly (CIA) machinery and functions in the MMS19 protein-dependent CIA pathway. J Biol Chem. 2013; 288:16680–16689. 10.1074/jbc.M112.416602 PubMed DOI PMC

Ye Z, Musiol EM, Weber T, Williams GJ. Reprogramming acyl carrier protein interactions of an Acyl-CoA promiscuous trans-acyltransferase. Chem Biol. 2014; 21:636–646. 10.1016/j.chembiol.2014.02.019 PubMed DOI PMC

Steeland S, Puimège L, Vandenbroucke RE, Van Hauwermeiren F, Haustraete J, Devoogdt N, et al. Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1. J Biol Chem. 2015; 290:4022–4037. 10.1074/jbc.M114.617787 PubMed DOI PMC

Poon SK, Peacock L, Gibson W, Gull K, Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2012; 2:110037 10.1098/rsob.110037 PubMed DOI PMC

Tulloch LB, Menzies SK, Fraser AL, Gould ER, King EF, Zacharova MK, et al. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues. PLoS Negl Trop Dis. 2017; 11:e0005886 10.1371/journal.pntd.0005886 PubMed DOI PMC

Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog. 2017; 13:e1006310 10.1371/journal.ppat.1006310 PubMed DOI PMC

Hirumi H, Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989; 75:985–989. 10.2307/3282883 PubMed DOI

Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol. 2002; 125:211–216. 10.1016/S0166-6851(02)00238-4 PubMed DOI

McAllaster MR, Sinclair-Davis AN, Hilton NA, de Graffenried CL. A unified approach towards Trypanosoma brucei functional genomics using Gibson assembly. Mol Biochem Parasitol. 2016; 210:13–21. 10.1016/j.molbiopara.2016.08.001 PubMed DOI PMC

Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015; 5:140197–140197. 10.1098/rsob.140197 PubMed DOI PMC

Lee JH, Nguyen TN, Schimanski B, Günzl A. Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH. Eukaryot Cell. 2007; 6:641–649. 10.1128/EC.00411-06 PubMed DOI PMC

Schimanski B, Nguyen TN, Günzl A. Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell. 2005; 4:1942–1950. 10.1128/EC.4.11.1942-1950.2005 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9:676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9:671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2003; 20:45–50. 10.1093/bioinformatics/btg371 PubMed DOI

Dumon-Seignovert L, Cariot G, Vuillard L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif. 2004; 37:203–206. 10.1016/j.pep.2004.04.025 PubMed DOI

Günzl A, Schimanski B. Tandem Affinity Purification of Proteins. Current Protocols in Protein Science. 2009. pp. 19.19.1–19.19.16. 10.1002/0471140864.ps1919s55 PubMed DOI

Schneider A, Charrière F, Pusnik M, Horn EK. Isolation of mitochondria from procyclic Trypanosoma brucei. In: Structural Genomics and Drug Discovery. 2007. pp. 67–80. 10.1007/978-1-59745-365-3_5 PubMed DOI

Smíd O, Horáková E, Vilímová V, Hrdy I, Cammack R, Horváth A, et al. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem. 2006; 281:28679–28686. 10.1074/jbc.M513781200 PubMed DOI

Miller FJ Jr., Griendling KK. Functional evaluation of nonphagocytic NAD(P)H oxidases. Redox Cell Biology and Genetics Part B. 2002. pp. 220–233. 10.1016/S0076-6879(02)53050-0 PubMed DOI

Molik S, Lill R, Mühlenhoff U. Methods for studying iron metabolism in yeast mitochondria. Mitochondria. 2007. pp. 261–280. 10.1016/S0091-679X(06)80013-0 PubMed DOI

Gould MK, Vu XL, Seebeck T, de Koning HP. Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: Comparison with the Alamar Blue assay. Anal Biochem. 2008; 382:87–93. 10.1016/j.ab.2008.07.036 PubMed DOI

Sherman F. Getting started with yeast. Guide to Yeast Genetics and Molecular and Cell Biology—Part B. 2002. pp. 3–41. 10.1016/S0076-6879(02)50954-X DOI

Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995; 156:119–122. 10.1016/0378-1119(95)00037-7 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...