A nonmitochondrial hydrogen production in Naegleria gruberi
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24682152
PubMed Central
PMC4007538
DOI
10.1093/gbe/evu065
PII: evu065
Knihovny.cz E-zdroje
- Klíčová slova
- Naegleria, hydrogen hypothesis, hydrogenase, maturases, mitochondrial evolution,
- MeSH
- cytosol enzymologie MeSH
- hydrogenasa genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- Naegleria enzymologie genetika MeSH
- protozoální proteiny genetika metabolismus MeSH
- vodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogenasa MeSH
- protozoální proteiny MeSH
- vodík MeSH
Naegleria gruberi is a free-living heterotrophic aerobic amoeba well known for its ability to transform from an amoeba to a flagellate form. The genome of N. gruberi has been recently published, and in silico predictions demonstrated that Naegleria has the capacity for both aerobic respiration and anaerobic biochemistry to produce molecular hydrogen in its mitochondria. This finding was considered to have fundamental implications on the evolution of mitochondrial metabolism and of the last eukaryotic common ancestor. However, no actual experimental data have been shown to support this hypothesis. For this reason, we have decided to investigate the anaerobic metabolism of the mitochondrion of N. gruberi. Using in vivo biochemical assays, we have demonstrated that N. gruberi has indeed a functional [FeFe]-hydrogenase, an enzyme that is attributed to anaerobic organisms. Surprisingly, in contrast to the published predictions, we have demonstrated that hydrogenase is localized exclusively in the cytosol, while no hydrogenase activity was associated with mitochondria of the organism. In addition, cytosolic localization displayed for HydE, a marker component of hydrogenase maturases. Naegleria gruberi, an obligate aerobic organism and one of the earliest eukaryotes, is producing hydrogen, a function that raises questions on the purpose of this pathway for the lifestyle of the organism and potentially on the evolution of eukaryotes.
Zobrazit více v PubMed
Bui ET, Johnson PJ. Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol. 1996;76:305–310. PubMed
Cable BL, John DT. Conditions for maximum enflagellation in Naegleria fowleri. J Protozool. 1986;33:467–472. PubMed
Ellis JE, Cole D, Lloyd D. Influence of oxygen on the fermentative metabolism of metronidazole-sensitive and resistant strains of Trichomonas vaginalis. Mol Biochem Parasitol. 1992;56:79–88. PubMed
Embley TM. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2006;361:1055–1067. PubMed PMC
Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440:623–630. PubMed
Embley TM, van der Giezen M, Horner DS, Dyal PL, Foster P. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci. 2003;358:191–201. discussion 201-192. PubMed PMC
Fritz-Laylin LK, Ginger ML, Walsh C, Dawson SC, Fulton C. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol. 2011;162:607–618. PubMed PMC
Fritz-Laylin LK, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–642. PubMed
Fromm HJ, Zewe V. Kinetic studies of yeast hexokinase. J Biol Chem. 1962;237:3027–3032. PubMed
Fulton C. Axenic cultivation of Naegleria gruberi. Requirement for methionine. Exp Cell Res. 1974;88:365–370. PubMed
Helianti I, et al. Characterization of native glutamate dehydrogenase from an aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Appl Microbiol Biotechnol. 2001;56:388–394. PubMed
Hug LA, Stechmann A, Roger AJ. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol. 2010;27:311–324. PubMed
Kamp C, et al. Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim Biophys Acta. 2008;1777:410–416. PubMed
Koonin EV. Preview. The incredible expanding ancestor of eukaryotes. Cell. 2010;140:606–608. PubMed PMC
Lithgow T, Junne T, Suda K, Gratzer S, Schatz G. The mitochondrial outer membrane protein Mas22p is essential for protein import and viability of yeast. Proc Natl Acad Sci U S A. 1994;91:11973–11977. PubMed PMC
Lloyd D, Ralphs JR, Harris JC. Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology. 2002;148:727–733. PubMed
Majewski N, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004;16:819–830. PubMed
Martin W, Muller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392:37–41. PubMed
Mentel M, Martin W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond B Biol Sci. 2008;363:2717–2729. PubMed PMC
Meyer J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 2007;64:1063–1084. PubMed PMC
Muller M, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76:444–495. PubMed PMC
Netz DJ, et al. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem. 2012;287:12365–12378. PubMed PMC
Nicolet Y, Fontecilla-Camps JC. Structure–function relationships in [FeFe]-hydrogenase active site maturation. J Biol Chem. 2012;287:13532–13540. PubMed PMC
Niedenthal RK, Riles L, Johnston M, Hegemann JH. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast. 1996;12:773–786. PubMed
Nixon JE, et al. Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull. 2003;204:1–9. PubMed
Nyvltova E, et al. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci U S A. 2013;110:7371–7376. PubMed PMC
Opperdoes FR, De Jonckheere JF, Tielens AG. Naegleria gruberi metabolism. Int J Parasitol. 2011;41:915–924. PubMed
Peters JW, Broderick JB. Emerging paradigms for complex iron–sulfur cofactor assembly and insertion. Annu Rev Biochem. 2012;81:429–450. PubMed
Putz S, et al. Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell. 2006;5:579–586. PubMed PMC
Rasoloson D, et al. Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology. 2002;148:2467–2477. PubMed
Sambrook J, Russell DW, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001.
Stechmann A, et al. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18:580–585. PubMed PMC
Sutak R, et al. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis. FEBS J. 2012;279:2768–2780. PubMed
Tsaousis AD, Leger MM, Stairs CW, Roger AJ. The biochemical adaptations of mitochondrion-related organelles of parasitic and free-living microbial eukaryotes to low oxygen environments. In: Altenbach AV, Bernhard JM, Seckbach J, editors. Anoxia: cellular origin, life in extreme habitats and astrobiology. The Netherlands: Springer; 2012. pp. 51–81.
Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev. 2007;107:4206–4272. PubMed
Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri
Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei