Identification and Validation of Compounds Targeting Leishmania major Leucyl-Aminopeptidase M17
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
38753953
PubMed Central
PMC11184559
DOI
10.1021/acsinfecdis.4c00009
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmania, M17 leucyl-aminopeptidase, RapidFire-MS, drug discovery, target validation,
- MeSH
- antiprotozoální látky * farmakologie chemie MeSH
- Leishmania donovani enzymologie účinky léků genetika MeSH
- Leishmania major * enzymologie účinky léků genetika MeSH
- lidé MeSH
- protozoální proteiny * antagonisté a inhibitory chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiprotozoální látky * MeSH
- protozoální proteiny * MeSH
Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.
Center for Protein Studies Faculty of Biology University of Havana 10400 Havana Cuba
Centre for Molecular Simulations University of Calgary Calgary AB T2N 1N4 Canada
Faculty of Sciences University of South Bohemia 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Burza S.; Croft S. L.; Boelaert M. Leishmaniasis. Lancet. 2018, 392 (10151), 951–970. 10.1016/S0140-6736(18)31204-2. PubMed DOI
World Health Organization. Leishmaniasis. 2023, Retrieved from https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html.
Desjeux P. The increase in risk factors for leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2001, 95 (3), 239–243. 10.1016/S0035-9203(01)90223-8. PubMed DOI
World Health Organization. Leishmaniasis. 2023, Retrieved from https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.
Boelaert M.; Sundar S.. Leishmaniasis. In Manson’s Tropical Diseases, 23rd ed.; Farrar J.; Hotez P. J.; Junghanss T.; Kang G.; Lalloo D.; White N., Eds.; Elsevier Inc.: Philadelphia, 2014; pp 631–651.http://lib.itg.be/pdf/itg/2013/2013mtdi0631.pdf.
Mann S.; Frasca K.; Scherrer S.; Henao-Martínez A. F.; Newman S.; Ramanan P.; Suarez J. A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop Med. Rep. 2021, 8 (2), 121–132. 10.1007/s40475-021-00232-7. PubMed DOI PMC
Lupi O.; Bartlett B. L.; Haugen R. N.; Dy L. C.; Sethi A.; Klaus S. N.; Machado Pinto J.; Bravo F.; Tyring S. K. Tropical dermatology: Tropical diseases caused by protozoa. J. Am. Acad. Dermatol. 2009, 60 (6), 897–925. quiz 926–92810.1016/j.jaad.2009.03.004. PubMed DOI
World Health Organization. Neglected tropical diseases. 2021, Retrieved from https://www.who.int/health-topics/neglected-tropical-diseases/#tab=tab_1.
Alvar J.; Vélez I. D.; Bern C.; Herrero M.; Desjeux P.; Cano J.; Jannin J.; den Boer M. WHO leishmaniasis control team Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012, 7 (5), e3567110.1371/journal.pone.0035671. PubMed DOI PMC
Mohapatra S. Drug resistance in leishmaniasis: Newer developments. Trop Parasitol. 2014, 4 (1), 4–9. 10.4103/2229-5070.129142. PubMed DOI PMC
Kedzierski L.; Sakthianandeswaren A.; Curtis J. M.; Andrews P. C.; Junk P. C.; Kedzierska K. (2009) Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr. Med. Chem. 2009, 16 (5), 599–614. 10.2174/092986709787458489. PubMed DOI
De Almeida Nogueira N. P.; Morgado-Díaz J. A.; Menna-Barreto R. F.; Paes M. C.; da Silva-López R. E. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease. Acta Trop. 2013, 128 (1), 27–35. 10.1016/j.actatropica.2013.05.013. PubMed DOI
Matsui M.; Fowler J. H.; Walling L. L. Leucine aminopeptidases: diversity in structure and function. Biol. Chem. 2006, 387 (12), 1535–1544. 10.1515/BC.2006.191. PubMed DOI
Cadavid-Restrepo G.; Gastardelo T. S.; Faudry E.; de Almeida H.; Bastos I. M.; Negreiros R. S.; Lima M. M.; Assumpção T. C.; Almeida K. C.; Ragno M.; Ebel C.; Ribeiro B. M.; Felix C. R.; Santana J. M. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases. BMC Biochem. 2011, 12, 46.10.1186/1471-2091-12-46. PubMed DOI PMC
Harbut M. B.; Velmourougane G.; Dalal S.; Reiss G.; Whisstock J. C.; Onder O.; Brisson D.; McGowan S.; Klemba M.; Greenbaum D. C. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (34), E52610.1073/pnas.1105601108. PubMed DOI PMC
Aguado M. E.; Izquierdo M.; González-Matos M.; Varela A. C.; Méndez Y.; Del Rivero M. A.; Rivera D. G.; González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr. Drug Targets. 2023, 24 (5), 416–461. 10.2174/1389450124666230224140724. PubMed DOI
Edgar R. C. S.; Siddiqui G.; Hjerrild K.; Malcolm T. R.; Vinh N. B.; Webb C. T.; Holmes C.; MacRaild C. A.; Chernih H. C.; Suen W. W.; Counihan N. A.; Creek D. J.; Scammells P. J.; McGowan S.; de Koning-Ward T. F. Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. Elife. 2022, 11, e8081310.7554/eLife.80813. PubMed DOI PMC
Timm J.; Valente M.; García-Caballero D.; Wilson K. S.; González-Pacanowska D. Structural Characterization of Acidic M17 Leucine Aminopeptidases from the TriTryps and Evaluation of Their Role in Nutrient Starvation in Trypanosoma brucei. mSphere 2017, 2 (4), e00226-1710.1128/mSphere.00226-17. PubMed DOI PMC
Morty R. E.; Morehead J. Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J. Biol. Chem. 2002, 277 (29), 26057–26065. 10.1074/jbc.M202779200. PubMed DOI
Gu Y. Q.; Walling L. L. Identification of Residues Critical for Activity of the Wound-Induced Leucine Aminopeptidase (LAP-A) of Tomato. European Journal of Biochemistry/FEBS. 2002, 269, 1630–1640. 10.1046/j.1432-1327.2002.02795.x. PubMed DOI
Schneider P.; Glaser T. A. Characterisation of two soluble metalloexopeptidases in the protozoan parasite Leishmania major. Mol. Biochem. Parasitol. 1993, 62 (2), 223–231. 10.1016/0166-6851(93)90111-A. PubMed DOI
Ginger M. L.; Prescott M. C.; Reynolds D. G.; Chance M. L.; Goad L. J. Utilization of leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by Old and New World Leishmania species, Endotrypanum monterogeii and Trypanosoma cruzi. Eur. J. Biochem. 2000, 267 (9), 2555–66. 10.1046/j.1432-1327.2000.01261.x. PubMed DOI
Aguado M. E.; González-Matos M.; Izquierdo M.; Quintana J.; Field M. C.; González-Bacerio J. Expression in Escherichia coli, purification and kinetic characterization of LAPLm, a Leishmania major M17-aminopeptidase. Protein Expr Purif. 2021, 183, 105877.10.1016/j.pep.2021.105877. PubMed DOI
Izquierdo M.; Lin D.; O’Neill S.; Zoltner M.; Webster L.; Hope A.; Gray D. W.; Field M. C.; González-Bacerio J. Development of a high-throughput screening assay to identify inhibitors of the major M17-leucyl aminopeptidase from Trypanosoma cruzi using RapidFire mass spectrometry. SLAS Discovery 2020, 25 (9), 1064–1071. 10.1177/2472555220923367. PubMed DOI
Izquierdo M.; Lin D.; O’Neill S.; Webster L. A.; Paterson C.; Thomas J.; Aguado M. E.; Colina Araújo E.; Alpízar-Pedraza D.; Joji H.; MacLean L.; Hope A.; Gray D. W.; Zoltner M.; Field M. C.; González-Bacerio J.; De Rycker M. Identification of a potent and selective LAPTc inhibitor by RapidFire-Mass Spectrometry, with antichagasic activity. PLoS Negl. Trop. Dis. 2024, 18 (2), e001195610.1371/journal.pntd.0011956. PubMed DOI PMC
Copeland R. A.Enzymes, A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd ed.; Wiley-VCH, Inc.: New York, 2000.
Taylor M.; Ho J. MM/GBSA prediction of relative binding affinities of carbonic anhydrase inhibitors: effect of atomic charges and comparison with Autodock4Zn. J. Comput. Aided Mol. Des. 2023, 37 (4), 167–182. 10.1007/s10822-023-00499-0. PubMed DOI PMC
Corpas-Lopez V.; Wyllie S. Utilizing thermal proteome profiling to identify the molecular targets of anti-leishmanial compounds. STAR Protoc. 2021, 2 (3), 100704.10.1016/j.xpro.2021.100704. PubMed DOI PMC
Milne R.; Wiedemar N.; Corpas-Lopez V.; Moynihan E.; Wall R. J.; Dawson A.; Robinson D. A.; Shepherd S. M.; Smith R. J.; Hallyburton I.; Post J. M.; Dowers K.; Torrie L. S.; Gilbert I. H.; Baragaña B.; Patterson S.; Wyllie S. Toolkit of Approaches To Support Target-Focused Drug Discovery for Plasmodium falciparum Lysyl tRNA Synthetase. ACS Infect Dis. 2022, 8 (9), 1962–1974. 10.1021/acsinfecdis.2c00364. PubMed DOI PMC
Ambit A.; Woods K. L.; Cull B.; Coombs G. H.; Mottram J. C. Morphological events during the cell cycle of Leishmania major. Eukaryot Cell. 2011, 10 (11), 1429–1438. 10.1128/EC.05118-11. PubMed DOI PMC
Sajid M.; Robertson S. A.; Brinen L. S.; McKerrow J. H. Cruzain: the path from target validation to the clinic. Adv. Exp. Med. Biol. 2011, 712, 100–115. 10.1007/978-1-4419-8414-2_7. PubMed DOI
González-Bacerio J.; Varela A. C.; Aguado M. E.; Izquierdo M.; Méndez Y.; Del Rivero M. A.; Rivera D. G. Bacterial Metalo-Aminopeptidases as Targets in Human Infectious Diseases. Curr. Drug Targets. 2022, 23 (12), 1155–1190. 10.2174/1389450123666220316085859. PubMed DOI
Arastu-Kapur S.; Ponder E. L.; Fonović U. P.; Yeoh S.; Yuan F.; Fonović M.; Grainger M.; Phillips C. I.; Powers J. C.; Bogyo M. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat. Chem. Biol. 2008, 4 (3), 203–13. 10.1038/nchembio.70. PubMed DOI
Benz C.; Clucas C.; Mottram J. C.; Hammarton T. C. Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin. PLoS One 2012, 7 (1), e30367-1210.1371/journal.pone.0030367. PubMed DOI PMC
Peña-Diaz P.; Vancová M.; Resl C.; Field M. C.; Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog. 2017, 13 (4), e100631010.1371/journal.ppat.1006310. PubMed DOI PMC
Billington K.; Halliday C.; Madden R.; Dyer P.; Barker A. R.; Moreira-Leite F. F.; Carrington M.; Vaughan S.; Hertz-Fowler C.; Dean S.; Sunter J. D.; Wheeler R. J.; Gull K. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat. Microbiol. 2023, 8 (3), 533–547. 10.1038/s41564-022-01295-6. PubMed DOI PMC
Flipo M.; Beghyn T.; Leroux V.; Florent I.; Deprez B. P.; Deprez-Poulain R. F. Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. J. Med. Chem. 2007, 50 (6), 1322–1334. 10.1021/jm061169b. PubMed DOI
Drinkwater N.; Malcolm T. R.; McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie. 2019, 166, 38–51. 10.1016/j.biochi.2019.01.007. PubMed DOI
Machado P. A.; Carneiro M. P. D.; Sousa-Batista A. J.; Lopes F. J. P.; Lima A. P. C. A.; Chaves S. P.; Sodero A. C. R.; de Matos Guedes H. L. Leishmanicidal therapy targeted to parasite proteases. Life Sci. 2019, 219, 163–181. 10.1016/j.lfs.2019.01.015. PubMed DOI
Van Bocxlaer K.; Caridha D.; Black C.; Vesely B.; Leed S.; Sciotti R. J.; Wijnant G. J.; Yardley V.; Braillard S.; Mowbray C. E.; Ioset J. R.; Croft S. L. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int. J. Parasitol Drugs Drug Resist. 2019, 11, 129–138. 10.1016/j.ijpddr.2019.02.002. PubMed DOI PMC
Wyllie S.; Brand S.; Thomas M.; De Rycker M.; Chung C. W.; Pena I.; Bingham R. P.; Bueren-Calabuig J. A.; Cantizani J.; Cebrian D.; Craggs P. D.; Ferguson L.; Goswami P.; Hobrath J.; Howe J.; Jeacock L.; Ko E. J.; Korczynska J.; MacLean L.; Manthri S.; Wyatt P. G.; et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Nat. Acad. Sci. U. S. A. 2019, 116 (19), 9318–9323. 10.1073/pnas.1820175116. PubMed DOI PMC
Mowbray C. E.; Braillard S.; Glossop P. A.; Whitlock G. A.; Jacobs R. T.; Speake J.; Pandi B.; Nare B.; Maes L.; Yardley V.; Freund Y.; Wall R. J.; Carvalho S.; Bello D.; Van den Kerkhof M.; Caljon G.; Gilbert I. H.; Corpas-Lopez V.; Lukac I.; Patterson S.; Zuccotto F.; Wyllie S. DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis. J. Med. Chem. 2021, 64 (21), 16159–16176. 10.1021/acs.jmedchem.1c01437. PubMed DOI PMC
Valiallahi A.; Vazifeh Z.; Gatabi Z. R.; Davoudi M.; Gatabi I. R. (2023). PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Current medicinal chemistry. 2023, 10.2174/0929867331666230823094737. PubMed DOI
Braillard S.; Keenan M.; Breese K. J.; Heppell J.; Abbott M.; Islam R.; Shackleford D. M.; Katneni K.; Crighton E.; Chen G.; Patil R.; Lee G.; White K. L.; Carvalho S.; Wall R. J.; Chemi G.; Zuccotto F.; González S.; Marco M.; Deakyne J.; Standing D.; Brunori G.; Lyon J. J.; Castañeda-Casado P.; Camino I.; Martinez Martinez M. S.; Zulfiqar B.; Avery V. M.; Feijens P. B.; Van Pelt N.; Matheeussen A.; Hendrickx S.; Maes L.; Caljon G.; Yardley V.; Wyllie S.; Charman S. A.; Chatelain E. DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc1. Sci. Transl Med. 2023, 15 (726), eadh990210.1126/scitranslmed.adh9902. PubMed DOI PMC
Kao C. C.; Wedes S. H.; Hsu J. W.; Bohren K. M.; Comhair S. A.; Jahoor F.; Erzurum S. C. Arginine metabolic endotypes in pulmonary arterial hypertension. Pulm Circ. 2015, 5 (1), 124–34. 10.1086/679720. PubMed DOI PMC
Mirdita M.; Steinegger M.; Söding J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics. 2019, 35 (16), 2856–2858. 10.1093/bioinformatics/bty1057. PubMed DOI PMC
Steinegger M.; Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 2017, 35 (11), 1026–1028. 10.1038/nbt.3988. PubMed DOI
Jumper J.; Evans R.; Pritzel A.; Green T.; Figurnov M.; Ronneberger O.; Tunyasuvunakool K.; Bates R.; Žídek A.; Potapenko A.; Bridgland A.; Meyer C.; Kohl S. A. A.; Ballard A. J.; Cowie A.; Romera-Paredes B.; Nikolov S.; Jain R.; Adler J.; Back T.; Bodenstein S.; Silver D.; Vinyals O.; Senior A. W.; Kavukcuoglu K.; Kohli P.; Hassabis D.; et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021, 596 (7873), 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Fiser A.; Do R. K.; Sali A. Modeling of loops in protein structures. Protein Sci. 2000, 9 (9), 1753–1773. 10.1110/ps.9.9.1753. PubMed DOI PMC
Fiser A.; Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics. 2003, 19 (18), 2500–2501. 10.1093/bioinformatics/btg362. PubMed DOI
Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4 (1), 17.10.1186/1758-2946-4-17. PubMed DOI PMC
Santos-Martins D.; Forli S.; Ramos M. J.; Olson A. J. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf Model. 2014, 54 (8), 2371–2379. 10.1021/ci500209e. PubMed DOI PMC
Valdés-Tresanco M. S.; Valdés-Tresanco M. E.; Valiente P. A.; Moreno E. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct. 2020, 15 (1), 12.10.1186/s13062-020-00267-2. PubMed DOI PMC
Morris G. M.; Huey R.; Lindstrom W.; Sanner M. F.; Belew R. K.; Goodsell D. S.; Olson A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30 (16), 2785–2791. 10.1002/jcc.21256. PubMed DOI PMC
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19.10.1016/j.softx.2015.06.001. DOI
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11 (8), 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
He X.; Man V. H.; Yang W.; Lee T. S.; Wang J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 2020, 153 (11), 114502.10.1063/5.0019056. PubMed DOI PMC
Jakalian A.; Bush B. L.; Jack D. B.; Bayly C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 2000, 21, 132–146. 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P. PubMed DOI
Jakalian A.; Jack D. B.; Bayly C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23 (16), 1623–1641. 10.1002/jcc.10128. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey W. R.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Yang W.; Riley B. T.; Lei X.; Porebski B. T.; Kass I.; Buckle A. M.; McGowan S. Generation of AMBER force field parameters for zinc centres of M1 and M17 family aminopeptidases. J. Biomol Struct Dyn. 2018, 36 (10), 2595–2604. 10.1080/07391102.2017.1364669. PubMed DOI
Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4 (1), 116–122. 10.1021/ct700200b. PubMed DOI
Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Nguyen H.; Roe D. R.; Simmerling C. Improved Generalized Born Solvent Model Parameters for Protein Simulations. J. Chem. Theory Comput. 2013, 9 (4), 2020–2034. 10.1021/ct3010485. PubMed DOI PMC
Valdés-Tresanco M. E.; Valdés-Tresanco M. S.; Moreno E.; Valiente P. A. Assessment of Different Parameters on the Accuracy of Computational Alanine Scanning of Protein-Protein Complexes with the Molecular Mechanics/Generalized Born Surface Area Method. J. Phys. Chem. B 2023, 127 (4), 944–954. 10.1021/acs.jpcb.2c07079. PubMed DOI
Park E. K.; Jung H. S.; Yang H. I.; Yoo M. C.; Kim C.; Kim K. S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007, 56 (1), 45–50. 10.1007/s00011-007-6115-5. PubMed DOI
Daigneault M.; Preston J. A.; Marriott H. M.; Whyte M. K.; Dockrell D. H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 2010, 5 (1), e866810.1371/journal.pone.0008668. PubMed DOI PMC
Paradela L. S.; Wall R. J.; Carvalho S.; Chemi G.; Corpas-Lopez V.; Moynihan E.; Bello D.; Patterson S.; Güther M. L. S.; Fairlamb A. H.; Ferguson M. A. J.; Zuccotto F.; Martin J.; Gilbert I. H.; Wyllie S. Multiple unbiased approaches identify oxidosqualene cyclase as the molecular target of a promising anti-leishmanial. Cell Chem. Biol. 2021, 28 (5), 711–721. 10.1016/j.chembiol.2021.02.008. PubMed DOI PMC
Perez-Riverol Y.; Csordas A.; Bai J.; Bernal-Llinares M.; Hewapathirana S.; Kundu D. J.; Inuganti A.; Griss J.; Mayer G.; Eisenacher M.; Pérez E.; Uszkoreit J.; Pfeuffer J.; Sachsenberg T.; Yilmaz S.; Tiwary S.; Cox J.; Audain E.; Walzer M.; Jarnuczak A. F.; Ternent T.; Brazma A.; Vizcaíno J. A. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019, 47 (D1), D442–D450. 10.1093/nar/gky1106. PubMed DOI PMC
Tyanova S.; Temu T.; Sinitcyn P.; Carlson A.; Hein M. Y.; Geiger T.; Mann M.; Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016, 13 (9), 731–40. 10.1038/nmeth.3901. PubMed DOI
Allan C.; Burel J. M.; Moore J.; Blackburn C.; Linkert M.; Loynton S.; Macdonald D.; Moore W. J.; Neves C.; Patterson A.; Porter M.; Tarkowska A.; Loranger B.; Avondo J.; Lagerstedt I.; Lianas L.; Leo S.; Hands K.; Hay R. T.; Patwardhan A.; Best C.; Kleywegt G. J.; Zanetti G.; Swedlow J. R. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods. 2012, 9 (3), 245–53. 10.1038/nmeth.1896. PubMed DOI PMC