The Effect of Partly Replacing Vegetable Fat with Bovine Milk Fat in Infant Formula on Postprandial Lipid and Energy Metabolism: A Proof-of-principle Study in Healthy Young Male Adults
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
PubMed
33682997
PubMed Central
PMC8243939
DOI
10.1002/mnfr.202000848
Knihovny.cz E-zdroje
- Klíčová slova
- bovine milk fat, chylomicrons, infant formula, lipidomics, metabolism,
- MeSH
- chylomikrony krev MeSH
- dietní tuky * MeSH
- dvojitá slepá metoda MeSH
- energetický metabolismus * MeSH
- ketolátky krev MeSH
- klinické křížové studie MeSH
- kojenec MeSH
- lidé MeSH
- lipidy krev MeSH
- mastné kyseliny analýza MeSH
- metabolismus lipidů * MeSH
- mladý dospělý MeSH
- mléko * MeSH
- náhražky mateřského mléka * MeSH
- postprandiální období fyziologie MeSH
- zelenina MeSH
- zvířata MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- chylomikrony MeSH
- dietní tuky * MeSH
- ketolátky MeSH
- lipidy MeSH
- mastné kyseliny MeSH
SCOPE: Infant formula (IF) uses besides vegetable fats also bovine milk fat, which differs in triacylglycerol (TAG) structure. Furthermore, it differs in fatty acid (FA) composition. Whether changing fat source in IF affects postprandial energy metabolism, lipemic response, and blood lipid profile is unknown. METHODS AND RESULTS: A proof-of-principle study, with a randomized controlled double-blind cross-over design, is conducted. Twenty healthy male adults consumed drinks with either 100% vegetable fat (VEG) or 67% bovine milk fat and 33% vegetable fat (BOV), on 2 separate days. For a detailed insight in the postprandial responses, indirect calorimetry is performed continuously, and venous blood samples are taken every 30 min, until 5 h postprandially. No differences in postprandial energy metabolism, serum lipids, lipoprotein, or chylomicron concentrations are observed between drinks. After consumption of VEG-drink, C18:2n-6 in serum increased. Observed differences in chylomicron FA profile reflect differences in initial FA profile of test drinks. Serum ketone bodies concentrations increase following consumption of BOV-drink. CONCLUSIONS: The use of bovine milk fat in IF does neither affect postprandial energy metabolism nor lipemic response in healthy adults, but alters postprandial FA profiles and ketone metabolism. Whether the exact same effects occur in infants requires experimental verification.
4th Department of Internal Medicine 1st Faculty of Medicine Charles University Prague Czech Republic
FrieslandCampina Stationsplein 1 Amersfoort 3818 LE Netherlands
Human and Animal Physiology Wageningen University de Elst 1 Wageningen 6708 WD Netherlands
Maastricht Centre for Systems Biology Maastricht University Maastricht 6200 MD Netherlands
Zobrazit více v PubMed
Manson W. G., Weaver L. T., Arch. Dis. Child. Fetal Neonatal Ed. 1997, 76, F206. PubMed PMC
Hageman J. H. J., Danielsen M., Nieuwenhuizen A. G., Feitsma A. L., Dalsgaard T. K., Int. Dairy J. 2019, 92, 37.
Sun C., Wei W., Su H., Zou X., Wang X., Food Chem. 2018, 242, 29. PubMed
Manios Y., Karaglani E., Thijs‐Verhoeven I., Vlachopapadopoulou E., Papazoglou A., Maragoudaki E., Manikas Z., Kampani M., Christaki I., Vonk M., Bos R., Parikh P., Proc. Nutr. Soc. 2020, 79, 1. PubMed PMC
Kasai M., Nosaka N., Maki H., Suzuki Y., Takeuchi H., Aoyama T., Ohra A., Harada Y., Okazaki M., Kondo K., J. Nutr. Sci. Vitaminol. 2002, 48, 536. PubMed
Ogawa A., Nosaka N., Kasai M., Aoyama T., Okazaki M., Igarashi O., Kondo K., J. Oleo Sci. 2007, 56, 283. PubMed
Scalfi L., Coltorti a., Contaldo F., Am. J. Clin. Nutr. 1991, 53, 1130. PubMed
Desmarchelier C., Borel P., Lairon D., Maraninchi M., Valéro R., Nutrients 2019, 11, 1299. PubMed PMC
Innis S. M., Nelson C. M., Prostaglandins, Leukot. Essent. Fat. Acids 2013, 89, 145. PubMed
Nelson C. M., Innis S. M., Am. J. Clin. Nutr. 1999, 70, 62. PubMed
Borén J., Matikainen N., Adiels M., Taskinen M.‐R., Clin. Chim. Acta 2014, 431, 131. PubMed
Hyson D., Rutledge J. C., Berglund L., Curr. Atheroscler. Rep. 2003, 5, 437. PubMed
Lopez‐Miranda J., Marin C., Dietary, Physiological, and Genetic Impacts on Postprandial Lipid Metabolism, CRC Press/Taylor & Francis 2010. PubMed
Rathnayake K. M., Weech M., Jackson K. G., Lovegrove J. A., Nutr. Res. Rev. 2018, 31, 193. PubMed
Harris J. A., Benedict F. G., Proc. Natl. Acad. Sci. USA 1918, 4, 370. PubMed PMC
de J. B., Weir V., J. Physiol. 1949, 109, 1. PubMed PMC
Péronnet F., Massicotte D., Can. J. Sport Sci. 1991, 16, 23. PubMed
Ala‐Korpela M., Clin. Chem. Lab. Med. 2008, 46, 27. PubMed
Tvrzická E., Vecka M., Staňková B., Žák A., Anal. Chim. Acta 2002, 465, 337.
Folch J., Lees M., Sloane stanley G. H., J. Biol. Chem. 1957, 226, 497. PubMed
Carlson L. A., Clin. Chim. Acta. 1985, 149, 89. PubMed
Pinheiro J., Bates D., DebRoy S., Sarkar D., R. C. Team , nlme: Linear and Nonlinear Mixed Effects Models. 2019. https://CRAN.R-project.org/package=nlme.
Team R. C., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, R Core Team, Vienna, Austria 2018. http://www.R-project.org/.
Marrades M. P., Martínez J. A., Moreno‐Aliaga M. J., Eur. J. Clin. Nutr. 2007, 61, 166. PubMed
Blaak E. E., Hul G., Verdich C., Stich V., Martinez A., Petersen M., Feskens E. F. M., Patel K., Oppert J. M., Barbe P., Toubro S., Anderson I., Polak J., Astrup A., Macdonald I. A., Langin D., Holst C., Sørensen T. I., Saris W. H. M., J. Clin. Endocrinol. Metab. 2006, 91, 1462. PubMed
Chiu C. H., Yang T. J., Chen C. H., Zeng M. J., Lipids Health Dis. 2019, 18, 1. PubMed PMC
Smeets A. J., Lejeune M. P., Westerterp‐Plantenga M. S., Br. J. Nutr. 2009, 101, 1360. PubMed
Smeets A. J. P. G., Lejeune M. P. G. M., Westerterp‐Plantenga M. S., Appetite 2007, 49, 331.
Smeets A. J. P. G., Westerterp‐Plantenga M. S., Br. J. Nutr. 2006, 95, 795. PubMed
Metges C. C., Wolfram G., J. Nutr. 1991, 121, 31. PubMed
Randle P. J., Garland P. B., Hales C. N., Newsholme E. A., Lancet (London, England) 1963, 1, 785. PubMed
Fernández‐Calleja J. M. S., Bouwman L. M. S., Swarts H. J. M., Oosting A., Keijer J., van Schothorst E. M., Sci. Rep. 2019, 9, 1. PubMed PMC
Rizi E. P., Baig S., Loh T. P., Toh S. A., Khoo C. M., Shyong Tai E., Front. Physiol. 2019, 10, 1. PubMed PMC
Wojczynski M. K., Glasser S. P., Oberman A., Kabagambe E. K., Hopkins P. N., Tsai M. Y., Straka R. J., Ordovas J. M., Arnett D. K., Lipids Health Dis. 2011, 10, 181 DOI 10.1186/1476-511X-10-181. PubMed DOI PMC
Sciarrillo C. M., Koemel N. A., Tomko P. M., Bode K. B., Emerson S. R., Nutrients 2019, 11, 1089. PubMed PMC
Thijssen M. A., Mensink R. P., Small Differences in the Effects of Stearic Acid, Oleic Acid, and Linoleic Acid on the Serum Lipoprotein Profile of Humans 1–3, 2005. PubMed
Tremblay A. J., Lamarche B., Labonté M. È., Lépine M. C., Lemelin V., Couture P., Am. J. Clin. Nutr. 2014, 99, 54. PubMed
Diffenderfer M. R., Schaefer E. J., Curr. Opin. Lipidol. 2014, 25, 221. PubMed
Feingold K. R., Grunfeld C., in Endotext, MDText.Com, Inc., South Dartmouth: n.d.
Schönfeld P., Wojtczak L., J. Lipid Res. 2016, 57, 943. PubMed PMC
Panth N., Dias C. B., Wynne K., Singh H., Garg M. L., Clin. Nutr. 2019, 90, DOI 10.1016/J.CLNU.2019.02.008. PubMed DOI
Nielsen S. D., Amer B., Blaabjerg K., Dalsgaard T. K., Jessen R., Petrat‐Melin B., Rasmussen M. K., Poulsen H. D., Young J. F., J. Agric. Food Chem. 2017, 65, 281. PubMed
Perret J. P., J. Physiol. 1980, 76, 159. PubMed
Garg M. L., Keelan M., Thomson A. B. R., Clandinin M. T., Biochim. Biophys. Acta ‐ Lipids Lipid Metab. 1988, 958, 139. PubMed
Garg M. L., Keelan M., Thomson A. B., Clandinin M. T., Biochim. Biophys. Acta 1992, 1126, 17. PubMed
Kouba M., Mourot J., Reprod. Nutr. Dev. n.d., 38, 31. PubMed
Du Q., Martin J.‐C., Agnani G., Pages N., Leruyet P., Carayon P., Delplanque B., J. Nutr. Biochem. 2012, 23, 1573. PubMed
Lee J. M., Lee H., Kang S., Park W. J., Nutrients 23, 2016, 8, DOI 10.3390/NU8010023. PubMed DOI PMC
Keelan M., Clandinin M. T., Thomson A. B., Can. J. Physiol. Pharmacol. 1997, 75, 1009. PubMed
Bach A., Schirardin H., Weryha A., Bauer M., J. Nutr. 1977, 107, 1863. PubMed
Yeh Y.‐Y., Zee P., J. Nutr. 1976, 106, 58. PubMed
Sann L., Divry P., Lasne Y., Ruitton A., Acta Paediatr. Scand. 1982, 71, 923. PubMed
Wu P. Y. K., Edmond J., Auestad N., Rambathla S., Benson J., Picone T., Pediatr. Res. 1986, 20, 338. PubMed
Seaton T. B., Welle S. L., Warenko M. K., Campbell R. G., Am. J. Clin. Nutr. 1986, 44. PubMed
Lucas A., Boyes S., Bloom S. R., Aynsley‐Green A., Acta Paediatr. Scand. 1981, 70, 195. PubMed
Puchalska P., Crawford P. A., Cell Metab. 2017, 25, 262. PubMed PMC
Uauy R., Dangour A. D., Ann. Nutr. Metab. 2009, 55, 76. PubMed
Steiner P., Ann. Nutr. Metab. 2020, 75, 8. PubMed