Identification of novel sequence variations in microRNAs in chronic lymphocytic leukemia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24306027
PubMed Central
PMC4004199
DOI
10.1093/carcin/bgt396
PII: bgt396
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- chromozomální aberace MeSH
- chronická lymfatická leukemie genetika MeSH
- dospělí MeSH
- frekvence genu MeSH
- genetická variace * MeSH
- jednonukleotidový polymorfismus MeSH
- konformace nukleové kyseliny MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA chemie genetika MeSH
- mutace MeSH
- regulace genové exprese u leukemie MeSH
- sekvenční analýza DNA MeSH
- senioři MeSH
- těžké řetězce imunoglobulinů genetika MeSH
- zárodečné mutace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
- MIRN16 microRNA, human MeSH Prohlížeč
- MIRN29a microRNA, human MeSH Prohlížeč
- těžké řetězce imunoglobulinů MeSH
MicroRNA (miRNA) expression is deregulated in many tumors including chronic lymphocytic leukemia (CLL). Although the particular mechanism(s) responsible for their aberrant expression is not well characterized, the presence of mutations and single-nucleotide polymorphisms (SNPs) in miRNA genes, possibly affecting their secondary structure and expression, has been described. In CLL; however, the impact and frequency of such variations have yet to be elucidated. Using a custom resequencing microarray, we screened sequence variations in 109 cancer-related pre-miRNAs in 98 CLL patients. Additionally, the primary regions of miR-29b-2/29c and miR-16-1 were analyzed by Sanger sequencing in another cohort of 213 and 193 CLL patients, respectively. Altogether, we describe six novel miR-sequence variations and the presence of SNPs (n = 27), most of which changed the miR-secondary structure. Moreover, some of the identified SNPs have a significantly different frequency in CLL when compared with a control population. Additionally, we identified a novel variation in miR-16-1 that had not been described previously in CLL patients. We show that this variation affects the expression of mature miR-16-1. We also show that the expression of another miRNA with pathogenetic relevance for CLL, namely miR-29b-2, is influenced by the presence of a polymorphic insertion, which is more frequent in CLL than in a control population. Altogether, these data suggest that sequence variations may occur during CLL development and/or progression.
Zobrazit více v PubMed
Lewis B.P., et al. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20 PubMed
Lim L.P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773 PubMed
Brennecke J., et al. (2005). Principles of microRNA-target recognition. PLoS Biol., 3, e85. PubMed PMC
Krek A., et al. (2005). Combinatorial microRNA target predictions. Nat. Genet., 37, 495–500 PubMed
Bartel D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297 PubMed
Calin G.A., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA, 99, 15524–15529 PubMed PMC
Klein U., et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28–40 PubMed
Döhner H., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med., 343, 1910–1916 PubMed
Calin G.A., et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med., 353, 1793–1801 PubMed
Mraz M., et al. (2009). miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia, 23, 1159–1163 PubMed
Mraz M., et al. (2012). MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood, 119, 2110–2113 PubMed
Mraz M., et al. (2012). MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. Expert Rev. Hematol., 5, 579–581 PubMed
Mraz M., et al. (2013). MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk. Lymphoma, 54, 1836–1839 PubMed PMC
Zenz T., et al. (2009). miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113, 3801–3808 PubMed
Asslaber D., et al. (2010). MicroRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood, 115, 4191–4197 PubMed
Pekarsky Y., et al. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res., 66, 11590–11593 PubMed
Lu J., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838 PubMed
Takamizawa J., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res., 64, 3753–3756 PubMed
Calin G.A., et al. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer, 6, 857–866 PubMed
Volinia S., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA, 103, 2257–2261 PubMed PMC
Duan R., et al. (2007). Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum. Mol. Genet., 16, 1124–1131 PubMed
Denli A.M., et al. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432, 231–235 PubMed
Han J., et al. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 18, 3016–3027 PubMed PMC
Grishok A., et al. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23–34 PubMed
Hutvágner G., et al. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834–838 PubMed
Doench J.G., et al. (2004). Specificity of microRNA target selection in translational repression. Genes Dev., 18, 504–511 PubMed PMC
Iwai N., et al. (2005). Polymorphisms in human pre-miRNAs. Biochem. Biophys. Res. Commun., 331, 1439–1444 PubMed
Saunders M.A., et al. (2007). Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA, 104, 3300–3305 PubMed PMC
Landi D., et al. (2008). Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis, 29, 579–584 PubMed
He H., et al. (2005). The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA, 102, 19075–19080 PubMed PMC
Chin L.J., et al. (2008). A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk. Cancer Res., 68, 8535–8540 PubMed PMC
Wojcik S.E., et al. (2010). Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis, 31, 208–215 PubMed PMC
Mott J.L., et al. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26, 6133–6140 PubMed PMC
Santanam U., et al. (2010). Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc. Natl Acad. Sci. USA, 107, 12210–12215 PubMed PMC
Mraz M., et al. (2009). MicroRNA isolation and stability in stored RNA samples. Biochem. Biophys. Res. Commun., 390, 1–4 PubMed
Lipshutz R.J., et al. (1999). High density synthetic oligonucleotide arrays. Nat. Genet., 21(s uppl. 1), 20–24 PubMed
Marshall O.J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics, 20, 2471–2472 PubMed
Cutler D.J., et al. (2001). High-throughput variation detection and genotyping using microarrays. Genome Res., 11, 1913–1925 PubMed PMC
Di X., et al. (2005). Alternative base calling method for resequencing microarrays. Conf. Proc. IEEE Eng. Med. Biol. Soc., 3, 2809–2812 PubMed
Bruce C.K., et al. (2010). Design and validation of a metabolic disorder resequencing microarray (BRUM1). Hum. Mutat., 31, 858–865 PubMed
Consortium G.P. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073 PubMed PMC
Gruber A.R., et al. (2008). The Vienna RNA websuite. Nucleic Acids Res., 36(Web Server issue), W70–W74 PubMed PMC
Moorhead M., et al. (2006). Optimal genotype determination in highly multiplexed SNP data. Eur. J. Hum. Genet., 14, 207–215 PubMed
Zeng Y., et al. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J., 24, 138–148 PubMed PMC
Han J., et al. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125, 887–901 PubMed
Zeng Y., et al. (2005). Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem., 280, 27595–27603 PubMed
Cimmino A., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA, 102, 13944–13949 PubMed PMC
Lujambio A., et al. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6, 1455–1459 PubMed
Bandres E., et al. (2009). Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer, 125, 2737–2743 PubMed
Hu Z., et al. (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat., 30, 79–84 PubMed
Xu B., et al. (2010). A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo . Prostate, 70, 467–472 PubMed
Jazdzewski K., et al. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA, 105, 7269–7274 PubMed PMC
Zhou B., et al. (2011). Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol. Carcinog., 50, 499–505 PubMed
Mencía A., et al. (2009). Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet., 41, 609–613 PubMed
Borel C., et al. (2008). Functional genetic variation of human miRNAs and phenotypic consequences. Mamm. Genome, 19, 503–509 PubMed
Xu T., et al. (2008). A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis, 29, 2126–2131 PubMed
Wang F., et al. (2012). miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol. Biol. Rep., 39, 2713–2722 PubMed
Li Y., et al. (2009). Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci., 100, 1234–1242 PubMed
Voorhoeve P.M., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124, 1169–1181 PubMed
Malcikova J., et al. (2009). Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood, 114, 5307–5314 PubMed
MicroRNAs in B-cell lymphomas: how a complex biology gets more complex