Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29049408
PubMed Central
PMC5648255
DOI
10.1371/journal.pone.0186917
PII: PONE-D-17-15168
Knihovny.cz E-zdroje
- MeSH
- ekonomika MeSH
- fosfor analýza MeSH
- jezera * MeSH
- monitorování životního prostředí MeSH
- podnebí * MeSH
- roční období MeSH
- sladká voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfor MeSH
European freshwater ecosystems have undergone significant human-induced and environmentally-driven variations in nutrient export from catchments throughout the past five decades, mainly in connection with changes in land-use, agricultural practice, waste water production and treatment, and climatic conditions. We analysed the relations among concentration of total phosphorus (TP) in the Slapy Reservoir (a middle reservoir of the Vltava River Cascade, Czechia), and socio-economic and climatic factors from 1963 to 2015. The study was based on a time series analysis, using conventional statistical tools, and the identification of breaking points, using a segmented regression. Results indicated clear long-term trends and seasonal patterns of TP, with annual average TP increasing up until 1991 and decreasing from 1992 to 2015. Trends in annual, winter and spring average TP concentrations reflected a shift in development of sewerage and sanitary infrastructure, agricultural application of fertilizers, and livestock production in the early 1990s that was associated with changes from the planned to the market economy. No trends were observed for average TP in autumn. The summer average TP has fluctuated with increased amplitude since 1991 in connection with recent climate warming, changes in thermal stratification stability, increased water flow irregularities, and short-circuiting of TP-rich inflow during high flow events. The climate-change-induced processes confound the generally declining trend in lake-water TP concentration and can result in eutrophication despite decreased phosphorus loads from the catchment. Our findings indicate the need of further reduction of phosphorus sources to meet ecological quality standards of the EU Water Framework Directive because the climate change may lead to a greater susceptibility of the aquatic ecosystem to the supply of nutrients.
Zobrazit více v PubMed
Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual. 2009;38:1930–1941. doi: 10.2134/jeq2008.0113 PubMed DOI
van der Waal DB, Verschoor AM, Verspagen JM, van Donk E, Huisman J. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ. 2010;8:145–152.
Vystavna Y, Le Coustumer P, Huneau F. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters. Environ Monit Assess. 2013;185:3581–3601. doi: 10.1007/s10661-012-2811-x PubMed DOI
Smith VH, Schindler DW. Eutrophication science: where do we go from here? Trends Ecol Evol. 2009;24:201–207. doi: 10.1016/j.tree.2008.11.009 PubMed DOI
Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ, et al. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr. 1996;41:1004–1017.
Hejzlar J, Dubrovský M, Buchtele J, Růžička M. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malše River, South Bohemia). Sci Total Environ. 2003;310:143–152. doi: 10.1016/S0048-9697(02)00634-4 PubMed DOI
Foley B, Jones ID, Maberly SC, Rippey B. Long term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biol. 2012;57:203–216.
Bowes MJ, Smith JT, Jarvie HP, Neal C, Barden R. Changes in point and diffuse source phosphorus inputs to the River Frome (Dorset, UK) from 1966 to 2006. Sci Total Environ. 2009;407:1954–1966. doi: 10.1016/j.scitotenv.2008.11.026 PubMed DOI
Matias N-G, Johnes RJ. Catchment phosphorus losses: an export coefficient modelling approach with scenario analysis for water management. Water Resour Manag. 2012;26:1041–1064.
Kopáček J, Hejzlar J, Posch M. Quantifying nitrogen leaching from diffuse agricultural and forest sources in a large heterogeneous catchment. Biogeochemistry. 2013;115:149–165. PubMed
Kopáček J, Hejzlar J, Posch M. Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900–2010. Environ Sci Technol. 2013;47:6400–6407. doi: 10.1021/es400181m PubMed DOI
Wagner I, Zalewski M. Temporal changes in the abiotic/biotic drivers of selfpurification in a temperate river. Ecol Eng. 2016;94:275–285.
Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Sci Total Environ. 2006; 365(1–3):223–237. doi: 10.1016/j.scitotenv.2006.02.036 PubMed DOI
Hayes NM, Vanni MJ, Horgan MJ, Renwick WH. Climate and land use interactively affect lake phytoplankton nutrient limitation status. Ecology. 2015; 96:392–402. PubMed
Gebre S, Boissy T, Alfredsen K. Sensitivity to climate change of the thermal structure and ice cover regime of three hydropower reservoirs. J Hydrol. 2014;510:208–227.
van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, et al. Global river discharge and water temperature under climate change. Global Environ Chang. 2013;23:450–464.
Flaim G, Eccel E, Zeileis A, Toller G, Cerasino L, Obertegger U. Effects of re-oligotrophication and climate change on lake thermal structure. Freshwater Biol. 2016;61:1802–1814.
Correll DL, Jordan TE, Weller DE. Effects of precipitation and air temperature on phosphorus fluxes from Rhode River watersheds. J Environ Qual. 1999;28:144–154.
Brázdil R, Chromá K, Dobrovolný P, Tolasz R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol. 2009;29:223–242.
Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffmann CC, et al. Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia. 2011;663(1):1–21.
Ma W-X, Huang T-L, Li X, Ju T. Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir. Environ Sci Pollut Res. 2015;22:18372–18380. PubMed
Munawar M, Mandrak NE, Munawar IF, Fitzpatrick M. How are the North American Great Lakes coping with multiple stressors? Comparison of Lakes Ontario and Superior. Int Ver Theor Angew. 2009;30:1013–1019.
Nõges P, Nõges T, Ghiani M, Sena F, Fresner R, Friedl M, et al. Increased nutrient loading and rapid changes in phytoplankton expected with climate change in stratified South European lakes: sensitivity of lakes with different trophic state and catchment properties. Hydrobiologia. 2011;667:255–270.
Waters S, Webster-Brown JG. The use of a mass balance phosphorus budget for informing nutrient management in shallow coastal lakes. J Hydro-Environ Res. 2016;10: 32–49.
Yakovlev V, Vystavna Y, Diadin D, Vergeles Y. Nitrates in springs and rivers of East Ukraine: Distribution, contamination and fluxes. Appl Geochem. 2015;53:71–78.
Bai Z, Ma L, Ma W, Qin W, Velthof GL, Oenema O, et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030. Nutr Cycl Agroecosys. 2016;104:361–372.
Kowalkowski T, Pastuszak M, Igras J, Buszewski B. Differences in emission of nitrogen and phosphorus into the Vistula and Oder basins in 1995–2008. Natural and anthropogenic causes (MONERIS model). J Marine Syst. 2012;89:48–60.
Bouraoui F, Grizzetti B, Long term change of nutrient concentrations of rivers discharging in European seas. Sci Total Environ. 2011;409:4899–4916. doi: 10.1016/j.scitotenv.2011.08.015 PubMed DOI
Istvanovics V, Honti M. Efficiency of nutrient management in controlling eutrophication of running waters in the Middle Danube Basin. Hydrobiologia. 2012;686:55–71.
Vetter M, Sousa A. Past and current trophic development in lake Ammersee—Alterations in a normal range or possible signals of climate change. Fund Appl Limnol. 2012;180:41–57.
Simic SB, Dordevic NB, Milosevic D. The relationship between the dominance of cyanobacteria species and environmental variables in different seasons and after extreme precipitation. Fund Appl Limnol. 2017;190:1–11.
Hupfer M, Lewandowski J. Oxygen controls the phosphorus release from lake sediments–a long-lasting paradigm in limnology. Int Rev Hydrobiol. 2008;93:415–432.
Müller B, Gächter B, Wüest A. Accelerated water quality improvement during oligotrophication in peri-alpine lakes. Environ Sci Technol. 2014;48:6671–6677. doi: 10.1021/es4040304 PubMed DOI
Kohler J, Hilt S, Adrian R, Nicklisch A, Kozerski HP, Walz N. Long-term response of a shallow moderately flushed lake to reduce external phosphorus and nitrogen loading. Freshwater Biol. 2005;50(10):1639–1650.
Horn H, Paul L, Horn W, Uhlmann D, Röske I. Climate change impeded the re-oligotrophication of the Saidenbach Reservoir. Int Rev Hydrobiol. 2015;100:43–60.
Recanatesi F, Ripa MN, Leone A, Luigi P, Luca S. Land Use, Climate and Transport of Nutrients: Evidence Emerging from the Lake Vicocase Study. Environ Manage. 2013;52(2):503–513. doi: 10.1007/s00267-013-0060-6 PubMed DOI
Trolle D, Nielsen A, Rolighed J, Thodsen H, Andersen HE, Karlsson IB, et al. Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Climate Res. 2015;64:55–72.
Krasa J, Dostal T, Rosendorf P, Borovec J, Hejzlar J. Modelling of sediment and phosphorus loads in reservoirs in the Czech Republic. Adv Geoecol. 2015;44:21–34.
Wetzel RG. Limnology: Lake and River Ecosystems. Academic Press, San Diego: 2001.
Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ Sci Technol. 2016;50:8923–8929. doi: 10.1021/acs.est.6b02204 PubMed DOI
Manca M, Torretta B, Comoli P, Amsinck SL, Jeppesen E. Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshwater Biol. 2007;52:2256–2269.
Thackeray SJ, Jones ID, Maberly SC. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. J Ecol. 2008;96:523–535.
Sommer U, Adrian R, Domis LD, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol. 2012;S43:429–448.
Kopáček J, Hejzlar J, Porcal P, Posch M. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900–2010. Sci Total Environ. 2014;470–471:543–550. doi: 10.1016/j.scitotenv.2013.10.013 PubMed DOI
Straškraba M, Hrbáček J, Javornický P. Effect of an upstream reservoir on the stratification conditions in Slapy Reservoir In: Hrbáček J, Straškraba M (eds), Hydrobiological Studies 2, Academia, Prague, 1973. pp 7–82.
Kredba M. The Vltava River Cascade. Ministry of Water and Forestry Management, Prague: 1969. 274 pp.
Hrbáček J, Brandl Z, Straškraba M. Do the long term changes in zooplankton biomass indicate changes in fish stock? Hydrobiologia. 2003;504:203–213.
Popovský J. Determination of total phosphorus in fresh waters. Int Revue Ges Hydrobiol. 1970;55:435–443.
Kopáček J, Hejzlar J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ An Ch. 1993;53:173–183.
Strickland JDH, Parsons TR. A manual of sea water analysis. Bull Fish Res Board Canada. 1960;125:185.
Lorenzen CJ. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr. 1967;12:343–346.
Hirsch RM, Slack JR, Smith R. Techniques of trend analysis for monthly water quality. Water Resour Res. 1982;18:107–121.
Johnson LL, Collier TK, Stein JE. An analysis in support of sediment quality thresholds for polycyclic aromatic hydrocarbons (PAHs) to protect estuarine fish. Aqua Conserv. 2002;12:517–538.
Murdoch PS, Shanley JB. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method. Water Resour Res. 2006;42(8):W08407.
Vanacker M, Wezel A, Payet V, Robin J. Determining tipping points in aquatic ecosystems: The case of biodiversity and chlorophyll α relations in fish pond systems. Ecol Ind. 2015;52:184–193.
Hejzlar J, Vystavna Y, Kopáček J. Trends in the balance and material flows of phosphorus in the Czech Republic. Waste Forum. 2016;(4):225–233.
Enderlein RE. Protecting Europe water-resources—policy issues. Water Sci Technol. 1995;31(8):1–8.
Pokorný D, Rolečková E, Fousová E, Rauscher J. Report on Water Management in the Czech Republic in 2014. Ministry of Agriculture of the Czech Republic, Prague: 2015.
Marada P, Křikava L, Křikava L, Kutlvašr K, Sláma P. Agroenvironmental management system–a technique for increasing the natural value of agroecosystems. Agric Econ–Czech. 2012; 58:201–212.
Hukari S, Hermann L, Nättorp A. From wastewater to fertilisers–Technical overview and critical review of European legislation governing phosphorus recycling. Sci Total Environ. 2016;542:1127–1135. doi: 10.1016/j.scitotenv.2015.09.064 PubMed DOI
Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, et al. Lake responses to reduced nutrient loading—An analysis of contemporary long-term data from 35 case studies. Freshwater Biol. 2005;50:1747–1771.
Bouwman AF, Beusen AHW, Lassaletta L, Van Apeldoorn DF, Van Grinsven HJM, Zhang J, et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports. 2017;7:40366 doi: 10.1038/srep40366 PubMed DOI PMC
Ott C, Rechberger H. The European phosphorus balance. Resour Conserv Recy. 2012;60:159–172.
Mariani MA, Lai GG, Padedda BM, Pulina S, Sechi N, Virdis T, et al. Long-term ecological studies on phytoplankton in Mediterranean reservoirs: a case study from Sardinia (Italy). Inland Waters. 2015;5:1–15.
Jochimsen MC, Kummerlin R, Straile D. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecol Lett. 2013;16:81–89. doi: 10.1111/ele.12018 PubMed DOI
Temnerud J, Weyhenmeyer GA. Abrupt changes in air temperature and precipitation: Do they matter for water chemistry? Global Biogeochem Cy. 2008;22(2):GB2008.
North RP, Livingstone DM, Hari RE, Köster O, Niederhauser P, Kipfer R. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters. 2013;3:341–350.
Procházková L, Straškrabová V, Popovský J. Changes of chemical constituents and bacterial numbers in Slapy Reservoir during eight years In: Hrbáček J, Straškraba M (eds), Hydrobiological Studies 2, Academia, Prague, 1973. pp 83–154.
Brzáková M, Hejzlar J, Nedoma J. Phosphorus uptake by suspended and settling seston in a stratified reservoir. Hydrobiologia. 2003;504:39–49.
Calvo E, Simó R, Coma R, Ribes M, Pascual J, Sabatés A, et al. Effects of climate change on Mediterranean marine ecosystems: The case of the Catalan Sea. Climate Res. 2011;50:1–29.
Lennartz ST, Lehmann A, Herrford J, Malien F, Hansen H- P, Biester H, et al. Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: Does climate change counteract the decline in eutrophication? Biogeosciences. 2014;11:6323–6339.
Naselli-Flores L. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr. Deep Lake and Mr. Shallow Lake. Hydrobiologia. 2003;506/509:13–21.