Protein flexibility in the light of structural alphabets

. 2015 ; 2 () : 20. [epub] 20150527

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26075209

Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.

Centre National de la Recherche Scientifique UMR7590 Sorbonne Universités Université Pierre et Marie Curie MNHN IRD IUC Paris France

Institut National de la Santé et de la Recherche Médicale U 1134 Paris France ; Institut National de la Transfusion Sanguine DSIMB Paris France ; UMR_S 1134 DSIMB Laboratory of Excellence GR Ex Paris France

Institut National de la Santé et de la Recherche Médicale U 1134 Paris France ; UMR_S 1134 DSIMB Université Paris Diderot Sorbonne Paris Cite Paris France ; Institut National de la Transfusion Sanguine DSIMB Paris France ; UMR_S 1134 DSIMB Laboratory of Excellence GR Ex Paris France

Institut National de la Santé et de la Recherche Médicale U 1134 Paris France ; UMR_S 1134 DSIMB Université Paris Diderot Sorbonne Paris Cite Paris France ; Institut National de la Transfusion Sanguine DSIMB Paris France ; UMR_S 1134 DSIMB Laboratory of Excellence GR Ex Paris France ; Ets Poulain Pointe Noire Congo

Institut National de la Santé et de la Recherche Médicale U 1134 Paris France ; UMR_S 1134 DSIMB Université Paris Diderot Sorbonne Paris Cite Paris France ; Institut National de la Transfusion Sanguine DSIMB Paris France ; UMR_S 1134 DSIMB Laboratory of Excellence GR Ex Paris France ; Faculté des Sciences et Techniques Université de Nantes Unité Fonctionnalité et Ingénierie des Protéines Centre National de la Recherche Scientifique UMR 6286 Université Nantes Nantes France

Institut National de la Santé et de la Recherche Médicale U 1134 Paris France ; UMR_S 1134 DSIMB Université Paris Diderot Sorbonne Paris Cite Paris France ; Institut National de la Transfusion Sanguine DSIMB Paris France ; UMR_S 1134 DSIMB Laboratory of Excellence GR Ex Paris France ; Laboratoire de Physique École Normale Supérieure de Lyon Université de Lyon Centre National de la Recherche Scientifique UMR 5672 Lyon France

Institut National de la Santé et de la Recherche Médicale U964 7 UMR Centre National de la Recherche Scientifique 7104 IGBMC Université de Strasbourg Illkirch France

Institute of Biotechnology The Czech Academy of Sciences Prague Czech Republic

Metagenopolis INRA Jouy en Josas France

Molecular Biophysics Unit Indian Institute of Science Bangalore Bangalore India

Molecular Biophysics Unit Indian Institute of Science Bangalore Bangalore India ; Department of Theoretical Biophysics Max Planck Institute of Biophysics Frankfurt Germany

Molecular Biophysics Unit Indian Institute of Science Bangalore Bangalore India ; Hospital for Sick Children and Departments of Biochemistry and Molecular Genetics University of Toronto Toronto ON Canada

National Library of Medicine National Center for Biotechnology Information National Institutes of Health Bethesda MD USA

Platelet Unit Institut National de la Transfusion Sanguine Paris France

Rutherford Appleton Laboratory Science and Technology Facilities Council Didcot UK

Zobrazit více v PubMed

Allen S. J., Crown S. E., Handel T. M. (2007). Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 25, 787–820. 10.1146/annurev.immunol.24.021605.090529 PubMed DOI

Batchelor J. D., Malpede B. M., Omattage N. S., DeKoster G. T., Henzler-Wildman K. A., Tolia N. H. (2014). Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog. 10:e1003869. 10.1371/journal.ppat.1003869 PubMed DOI PMC

Benros C., de Brevern A. G., Etchebest C., Hazout S. (2006). Assessing a novel approach for predicting local 3D protein structures from sequence. Proteins 62, 865–880. 10.1002/prot.20815 PubMed DOI

Benros C., de Brevern A. G., Hazout S. (2009). Analyzing the sequence-structure relationship of a library of local structural prototypes. J. Theor. Biol. 256, 215–226. 10.1016/j.jtbi.2008.08.032 PubMed DOI

Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., et al. . (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242. 10.1093/nar/28.1.235 PubMed DOI PMC

Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr., Brice M. D., Rodgers J. R., et al. . (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542. 10.1016/S0022-2836(77)80200-3 PubMed DOI

Bhaskara R. M., de Brevern A. G., Srinivasan N. (2013). Understanding the role of domain-domain linkers in the spatial orientation of domains in multi-domain proteins. J. Biomol. Struct. Dyn. 31, 1467–1480. 10.1080/07391102.2012.743438 PubMed DOI

Biswas S., Guharoy M., Chakrabarti P. (2009). Dissection, residue conservation, and structural classification of protein-DNA interfaces. Proteins 74, 643–654. 10.1002/prot.22180 PubMed DOI

Bornot A., Etchebest C., de Brevern A. G. (2009). A new prediction strategy for long local protein structures using an original description. Proteins 76, 570–587. 10.1002/prot.22370 PubMed DOI PMC

Budowski-Tal I., Nov Y., Kolodny R. (2010). FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately. Proc. Natl. Acad. Sci. U.S.A. 107, 3481–3486. 10.1073/pnas.0914097107 PubMed DOI PMC

Buehler M. J., Yung Y. C. (2009). Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8, 175–188. 10.1038/nmat2387 PubMed DOI

Camproux A. C., Gautier R., Tuffery P. (2004). A hidden markov model derived structural alphabet for proteins. J. Mol. Biol. 339, 591–605. 10.1016/j.jmb.2004.04.005 PubMed DOI

Camproux A. C., Tuffery P., Chevrolat J. P., Boisvieux J. F., Hazout S. (1999). Hidden Markov model approach for identifying the modular framework of the protein backbone. Protein Eng. 12, 1063–1073. 10.1093/protein/12.12.1063 PubMed DOI

Cech P., Kukal J., Cerny J., Schneider B., Svozil D. (2013). Automatic workflow for the classification of local DNA conformations. BMC Bioinformatics 14, 205. 10.1186/1471-2105-14-205 PubMed DOI PMC

Chavent M., Levy B., Krone M., Bidmon K., Nomine J. P., Ertl T., et al. . (2011). GPU-powered tools boost molecular visualization. Brief. Bioinformatics 12, 689–701. 10.1093/bib/bbq089 PubMed DOI

Cilia E., Pancsa R., Tompa P., Lenaerts T., Vranken W. F. (2013). From protein sequence to dynamics and disorder with DynaMine. Nat. Commun. 4, 2741. 10.1038/ncomms3741 PubMed DOI

Cilia E., Pancsa R., Tompa P., Lenaerts T., Vranken W. F. (2014). The DynaMine webserver: predicting protein dynamics from sequence. Nucleic Acids Res. 42, W264–W270. 10.1093/nar/gku270 PubMed DOI PMC

Compton A., Haber J. M. (1960). The duffy blood group system in transfusion reactions: a reviw of the literature and report of four cases. Blood 15, 186–191. PubMed

Corey R. B., Pauling L. (1953). Fundamental dimensions of polypeptide chains. Proc. R. Soc. Lond. B Biol. Sci. 141, 10–20. 10.1098/rspb.1953.0011 PubMed DOI

Craveur P., Rebehmed J., de Brevern A. G. (2014). PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins. Database 2014:bau041. 10.1093/database/bau041 PubMed DOI PMC

Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190. 10.1101/gr.849004 PubMed DOI PMC

Cutbush M., Mollison P. L. (1950). The Duffy blood group system. Heredity (Edinb.) 4, 383–389. 10.1038/hdy.1950.31 PubMed DOI

Cutts J. C., Powell R., Agius P. A., Beeson J. G., Simpson J. A., Fowkes F. J. (2014). Immunological markers of Plasmodium vivax exposure and immunity: a systematic review and meta-analysis. BMC Med. 12:150. 10.1186/s12916-014-0150-1 PubMed DOI PMC

de Brevern A. G., Autin L., Colin Y., Bertrand O., Etchebest C. (2009). In silico studies on DARC. Infect. Disord. Drug Targets 9, 289–303. 10.2174/1871526510909030289 PubMed DOI PMC

de Brevern A. G., Benros C., Gautier R., Valadie H., Hazout S., Etchebest C. (2004). Local backbone structure prediction of proteins. In Silico Biol. 4, 381–386. PubMed PMC

de Brevern A. G., Bornot A., Craveur P., Etchebest C., Gelly J. C. (2012). PredyFlexy: flexibility and local structure prediction from sequence. Nucleic Acids Res. 40, W317–W322. 10.1093/nar/gks482 PubMed DOI PMC

de Brevern A. G., Etchebest C., Hazout S. (2000). Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41, 271–287. 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z PubMed DOI

de Brevern A. G., Hazout S. (2003). 'Hybrid protein model' for optimally defining 3D protein structure fragments. Bioinformatics 19, 345–353. 10.1093/bioinformatics/btf859 PubMed DOI

de Brevern A. G., Wong H., Tournamille C., Colin Y., Le Van Kim C., Etchebest C. (2005). A structural model of a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC). Biochim. Biophys. Acta 1724, 288–306. 10.1016/j.bbagen.2005.05.016 PubMed DOI

Delano W. L. (2013). The PyMOL Molecular Graphics System on World Wide Web. Available online at: http://www.pymol.org

Dosztanyi Z., Csizmok V., Tompa P., Simon I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434. 10.1093/bioinformatics/bti541 PubMed DOI

Dudev M., Lim C. (2007). Discovering structural motifs using a structural alphabet: application to magnesium-binding sites. BMC Bioinformatics 8:106. 10.1186/1471-2105-8-106 PubMed DOI PMC

Dunker A. K. (2007). Another window into disordered protein function. Structure 15, 1026–1028. 10.1016/j.str.2007.08.001 PubMed DOI

Dunker A. K., Lawson J. D., Brown C. J., Williams R. M., Romero P., Oh J. S., et al. . (2001). Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59. 10.1016/S1093-3263(00)00138-8 PubMed DOI

Dunker A. K., Obradovic Z. (2001). The protein trinity–linking function and disorder. Nat. Biotechnol. 19, 805–806. 10.1038/nbt0901-805 PubMed DOI

Dunker A. K., Obradovic Z., Romero P., Garner E. C., Brown C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11, 161–171. PubMed

Eisenberg D. (2003). The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc. Natl. Acad. Sci. U.S.A. 100, 11207–11210. 10.1073/pnas.2034522100 PubMed DOI PMC

Espinoza J. P., Caradeux J., Norwitz E. R., Illanes S. E. (2013). Fetal and neonatal alloimmune thrombocytopenia. Rev. Obstet. Gynecol. 6, e15–21. 10.1097/AOG.0b013e31823403f4 PubMed DOI PMC

Etchebest C., Benros C., Hazout S., de Brevern A. G. (2005). A structural alphabet for local protein structures: improved prediction methods. Proteins 59, 810–827. 10.1002/prot.20458 PubMed DOI

Eyal E., Lum G., Bahar I. (2015). The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31, 1487–1489. 10.1093/bioinformatics/btu847 PubMed DOI PMC

Ferrada E., Melo F. (2009). Effective knowledge-based potentials. Protein Sci. 18, 1469–1485. 10.1002/pro.166 PubMed DOI PMC

Fetrow J. S., Palumbo M. J., Berg G. (1997). Patterns, structures, and amino acid frequencies in structural building blocks, a protein secondary structure classification scheme. Proteins 27, 249–271. PubMed

Fong J. H., Panchenko A. R. (2010). Intrinsic disorder and protein multibinding in domain, terminal, and linker regions. Mol. Biosyst. 6, 1821–1828. 10.1039/c005144f PubMed DOI PMC

Fornili A., Pandini A., Lu H. C., Fraternali F. (2013). Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles. J. Chem. Theory Comput. 9, 5127–5147. 10.1021/ct400486p PubMed DOI PMC

Galzitskaya O. V., Garbuzynskiy S. O., Lobanov M. Y. (2006). FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22, 2948–2949. 10.1093/bioinformatics/btl504 PubMed DOI

Garvie C. W., Phillips S. E. (2000). Direct and indirect readout in mutant Met repressor-operator complexes. Structure 8, 905–914. 10.1016/S0969-2126(00)00182-9 PubMed DOI

Gelly J. C., Joseph A. P., Srinivasan N., de Brevern A. G. (2011). iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res. 39, W18–W23. 10.1093/nar/gkr333 PubMed DOI PMC

George J. N., Caen J. P., Nurden A. T. (1990). Glanzmann's thrombasthenia: the spectrum of clinical disease. Blood 75, 1383–1395. PubMed

Goh C. S., Milburn D., Gerstein M. (2004). Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 14, 104–109. 10.1016/j.sbi.2004.01.005 PubMed DOI

Grunberg R., Leckner J., Nilges M. (2004). Complementarity of structure ensembles in protein-protein binding. Structure 12, 2125–2136. 10.1016/j.str.2004.09.014 PubMed DOI

Gu Y., Rosenblatt J., Morgan D. O. (1992). Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11, 3995–4005. PubMed PMC

Guerra C. A., Snow R. W., Hay S. I. (2006). Mapping the global extent of malaria in 2005. Trends Parasitol. 22, 353–358. 10.1016/j.pt.2006.06.006 PubMed DOI PMC

Hirose S., Yokota K., Kuroda Y., Wako H., Endo S., Kanai S., et al. . (2010). Prediction of protein motions from amino acid sequence and its application to protein-protein interaction. BMC Struct. Biol. 10:20. 10.1186/1472-6807-10-20 PubMed DOI PMC

Hirst J. D., Glowacki D. R., Baaden M. (2014). Molecular simulations and visualization: introduction and overview. Faraday Discuss. 169, 9–22. 10.1039/C4FD90024C PubMed DOI

Horne K., Woolley I. J. (2009). Shedding light on DARC: the role of the Duffy antigen/receptor for chemokines in inflammation, infection and malignancy. Inflamm. Res. 58, 431–435. 10.1007/s00011-009-0023-9 PubMed DOI

Huntington J. A., Read R. J., Carrell R. W. (2000). Structure of a serpin-protease complex shows inhibition by deformation. Nature 407, 923–926. 10.1038/35038119 PubMed DOI

Hwang H., Vreven T., Whitfield T. W., Wiehe K., Weng Z. (2011). A machine learning approach for the prediction of protein surface loop flexibility. Proteins 79, 2467–2474. 10.1002/prot.23070 PubMed DOI PMC

Hynes R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687. 10.1016/S0092-8674(02)00971-6 PubMed DOI

Ihaka R., Gentleman R. (1996). R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314. 10.2307/1390807 DOI

Ishida T., Kinoshita K. (2007). PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 35, W460–W464. 10.1093/nar/gkm363 PubMed DOI PMC

Jallu V., Bertrand G., Bianchi F., Chenet C., Poulain P., Kaplan C. (2013). The alphaIIb p.Leu841Met (Cab3(a+)) polymorphism results in a new human platelet alloantigen involved in neonatal alloimmune thrombocytopenia. Transfusion 53, 554–563. 10.1111/j.1537-2995.2012.03762.x PubMed DOI

Jallu V., Dusseaux M., Panzer S., Torchet M. F., Hezard N., Goudemand J., et al. . (2010). AlphaIIbbeta3 integrin: new allelic variants in Glanzmann thrombasthenia, effects on ITGA2B and ITGB3 mRNA splicing, expression, and structure-function. Hum. Mutat. 31, 237–246. 10.1002/humu.21179 PubMed DOI

Jallu V., Poulain P., Fuchs P. F., Kaplan C., de Brevern A. G. (2012). Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the beta3 subunit of the alphaIIbbeta3 integrin. PLoS ONE 7:e47304. 10.1371/journal.pone.0047304 PubMed DOI PMC

Jallu V., Poulain P., Fuchs P. F., Kaplan C., de Brevern A. G. (2014). Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit beta3: structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants. Biochimie 105, 84–90. 10.1016/j.biochi.2014.06.017 PubMed DOI

Janin J., Bahadur R. P., Chakrabarti P. (2008). Protein-protein interaction and quaternary structure. Q. Rev. Biophys. 41, 133–180. 10.1017/S0033583508004708 PubMed DOI

Jin Y., Dunbrack R. L., Jr. (2005). Assessment of disorder predictions in CASP6. Proteins 61(Suppl. 7), 167–175. 10.1002/prot.20734 PubMed DOI

Jones D. T., Cozzetto D. (2015). DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863. 10.1093/bioinformatics/btu744 PubMed DOI PMC

Jones S., Thornton J. M. (1996). Principles of protein-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 93, 13–20. 10.1073/pnas.93.1.13 PubMed DOI PMC

Joseph A. P., Agarwal G., Mahajan S., Gelly J. C., Swapna L. S., Offmann B., et al. . (2010a). A short survey on protein blocks. Biophys. Rev. 2, 137–145. 10.1007/s12551-010-0036-1 PubMed DOI PMC

Joseph A. P., Bornot A., de Brevern A. G. (2010b). Local structural alphabet, in Protein Structure Methods and Algorithms, eds Rangwala H., Karypis G. (Hoboken, NJ: Wiley; ), 75–106. 10.1002/9780470882207.ch5 DOI

Joseph A. P., de Brevern A. G. (2014). From local structure to a global framework: recognition of protein folds. J. R. Soc. Interface 11:20131147. 10.1098/rsif.2013.1147 PubMed DOI PMC

Joseph A. P., Srinivasan N., de Brevern A. G. (2012). Progressive structure-based alignment of homologous proteins: adopting sequence comparison strategies. Biochimie 94, 2025–2034. 10.1016/j.biochi.2012.05.028 PubMed DOI

Kabsch W., Sander C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637. 10.1002/bip.360221211 PubMed DOI

Karplus P., Schulz G. (1985). Prediction of chain flexibility in proteins. A tool for the selection of peptide antigens. Naturwissenschaften 72, 212–213. 10.1007/BF01195768 DOI

Kim S., Woo J., Seo E. J., Yu M., Ryu S. (2001). A 2.1 A resolution structure of an uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops. J. Mol. Biol. 306, 109–119. 10.1006/jmbi.2000.4357 PubMed DOI

Kolodny R., Koehl P., Guibas L., Levitt M. (2002). Small libraries of protein fragments model native protein structures accurately. J. Mol. Biol. 323, 297–307. 10.1016/S0022-2836(02)00942-7 PubMed DOI

Kuznetsov I. B. (2008). Ordered conformational change in the protein backbone: prediction of conformationally variable positions from sequence and low-resolution structural data. Proteins 72, 74–87. 10.1002/prot.21899 PubMed DOI

Kuznetsov I. B., McDuffie M. (2008). FlexPred: a web-server for predicting residue positions involved in conformational switches in proteins. Bioinformation 3, 134–136. 10.6026/97320630003134 PubMed DOI PMC

Le Q., Pollastri G., Koehl P. (2009). Structural alphabets for protein structure classification: a comparison study. J. Mol. Biol. 387, 431–450. 10.1016/j.jmb.2008.12.044 PubMed DOI PMC

Lensink M. F., Mendez R. (2008). Recognition-induced conformational changes in protein-protein docking. Curr. Pharm. Biotechnol. 9, 77–86. 10.2174/138920108783955173 PubMed DOI

Leonard S., Joseph A. P., Srinivasan N., Gelly J. C., de Brevern A. G. (2014). mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet. J. Biomol. Struct. Dyn. 32, 661–668. 10.1080/07391102.2013.787026 PubMed DOI

Lindahl E., Hess B., van der Spoel D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317. 10.1007/s008940100045 DOI

Linding R., Jensen L. J., Diella F., Bork P., Gibson T. J., Russell R. B. (2003). Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459. 10.1016/j.str.2003.10.002 PubMed DOI

Liu X. H., Hadley T. J., Xu L., Peiper S. C., Ray P. E. (1999). Up-regulation of Duffy antigen receptor expression in children with renal disease. Kidney Int. 55, 1491–1500. 10.1046/j.1523-1755.1999.00385.x PubMed DOI

Lobanov M. Y., Shoemaker B. A., Garbuzynskiy S. O., Fong J. H., Panchenko A. R., Galzitskaya O. V. (2010). ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder. Nucleic Acids Res. 38, D283–D287. 10.1093/nar/gkp963 PubMed DOI PMC

Luo X., Lv F., Pan Y., Kong X., Li Y., Yang Q. (2011). Structure-based prediction of the mobility and disorder of water molecules at protein-DNA interface. Protein Pept. Lett. 18, 203–209. 10.2174/092986611794475066 PubMed DOI

Mamonova T. B., Glyakina A. V., Kurnikova M. G., Galzitskaya O. V. (2010). Flexibility and mobility in mesophilic and thermophilic homologous proteins from molecular dynamics and FoldUnfold method. J. Bioinform. Comput. Biol. 8, 377–394. 10.1142/S0219720010004690 PubMed DOI

Marsh J. A. (2013). Buried and accessible surface area control intrinsic protein flexibility. J. Mol. Biol. 425, 3250–3263. 10.1016/j.jmb.2013.06.019 PubMed DOI

Matlock M. K., Holehouse A. S., Naegle K. M. (2015). ProteomeScout: a repository and analysis resource for post-translational modifications and proteins. Nucleic Acids Res. 43, D521–D530. 10.1093/nar/gku1154 PubMed DOI PMC

Meszaros B., Simon I., Dosztanyi Z. (2011). The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins. Phys. Biol. 8:035003. 10.1088/1478-3975/8/3/035003 PubMed DOI

Micheletti C., Seno F., Maritan A. (2000). Recurrent oligomers in proteins: an optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies. Proteins 40, 662–674. 10.1002/1097-0134(20000901)40:4<662::AID-PROT90>3.0.CO;2-F PubMed DOI

Miller L. H., Mason S. J., Clyde D. F., McGinniss M. H. (1976). The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304. 10.1056/NEJM197608052950602 PubMed DOI

Miller L. H., Mason S. J., Dvorak J. A., McGinniss M. H., Rothman I. K. (1975). Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–563. 10.1126/science.1145213 PubMed DOI

Misaghi S., Galardy P. J., Meester W. J., Ovaa H., Ploegh H. L., Gaudet R. (2005). Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J. Biol. Chem. 280, 1512–1520. 10.1074/jbc.M410770200 PubMed DOI

Nussinov R., Tsai C. J., Xin F., Radivojac P. (2012). Allosteric post-translational modification codes. Trends Biochem. Sci. 37, 447–455. 10.1016/j.tibs.2012.07.001 PubMed DOI

Offmann B., Tyagi M., de Brevern A. G. (2007). Local protein structures. Curr. Bioinform. 3, 165–202. 10.2174/157489307781662105 PubMed DOI

Olsson S., Vögeli B., Cavalli A., Boomsma W., Ferkinghoff-Borg J., Lindorff-Larsen K., et al. . (2014). Probabilistic determination of native state ensembles of proteins. J. Chem. Theory Comput. 10, 3484–3491. 10.1021/ct5001236 PubMed DOI

Otterbein L. R., Cosio C., Graceffa P., Dominguez R. (2002). Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system. Proc. Natl. Acad. Sci. U.S.A. 99, 8003–8008. 10.1073/pnas.122126299 PubMed DOI PMC

Palmer A. G., 3rd. (2001). Nmr probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129–155. 10.1146/annurev.biophys.30.1.129 PubMed DOI

Pan X. Y., Shen H. B. (2009). Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Pept. Lett. 16, 1447–1454. 10.2174/092986609789839250 PubMed DOI

Pandini A., Fornili A., Fraternali F., Kleinjung J. (2012). Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics. FASEB J. 26, 868–881. 10.1096/fj.11-190868 PubMed DOI PMC

Pandini A., Fornili A., Fraternali F., Kleinjung J. (2013). GSATools: analysis of allosteric communication and functional local motions using a structural alphabet. Bioinformatics 29, 2053–2055. 10.1093/bioinformatics/btt326 PubMed DOI PMC

Pandini A., Fornili A., Kleinjung J. (2010). Structural alphabets derived from attractors in conformational space. BMC Bioinformatics 11:97. 10.1186/1471-2105-11-97 PubMed DOI PMC

Park B. H., Levitt M. (1995). The complexity and accuracy of discrete state models of protein structure. J. Mol. Biol. 249, 493–507. 10.1006/jmbi.1995.0311 PubMed DOI

Powers R., Clore G., Garrett D., Gronenborn A. (1993). Relationships between the precision of high-resolution protein NMR structures, solution-order parameters, and crystallographic B factors. J. Magn. Reson. B 101, 325–327. 10.1006/jmrb.1993.1051 DOI

Python Software Foundation. (2015). Python Language Reference, Version 2.7. Available online at: http://www.python.org

Rangwala H., Kauffman C., Karypis G. (2009). svmPRAT: SVM-based protein residue annotation toolkit. BMC Bioinformatics 10:439. 10.1186/1471-2105-10-439 PubMed DOI PMC

Richardson J. S. (1981). The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339. 10.1016/S0065-3233(08)60520-3 PubMed DOI

Russo D., Teixeira J., Kneller L., Copley J. R., Ollivier J., Perticaroli S., et al. . (2011). Vibrational density of states of hydration water at biomolecular sites: hydrophobicity promotes low density amorphous ice behavior. J. Am. Chem. Soc. 133, 4882–4888. 10.1021/ja109610f PubMed DOI

Salwinski L., Miller C. S., Smith A. J., Pettit F. K., Bowie J. U., Eisenberg D. (2004). The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451. 10.1093/nar/gkh086 PubMed DOI PMC

Schlessinger A., Punta M., Yachdav G., Kajan L., Rost B. (2009). Improved disorder prediction by combination of orthogonal approaches. PLoS ONE 4:e4433. 10.1371/journal.pone.0004433 PubMed DOI PMC

Schlessinger A., Rost B. (2005). Protein flexibility and rigidity predicted from sequence. Proteins 61, 115–126. 10.1002/prot.20587 PubMed DOI

Schlessinger A., Yachdav G., Rost B. (2006). PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 22, 891–893. 10.1093/bioinformatics/btl032 PubMed DOI

Schneider B., Gelly J. C., de Brevern A. G., Cerny J. (2014). Local dynamics of proteins and DNA evaluated from crystallographic B factors. Acta Crystallogr. D Biol. Crystallogr. 70(Pt 9), 2413–2419. 10.1107/S1399004714014631 PubMed DOI PMC

Schuchhardt J., Schneider G., Reichelt J., Schomburg D., Wrede P. (1996). Local structural motifs of protein backbones are classified by self-organizing neural networks. Protein Eng. 9, 833–842. 10.1093/protein/9.10.833 PubMed DOI

Schwede T., Sali A., Honig B., Levitt M., Berman H. M., Jones D., et al. . (2009). Outcome of a workshop on applications of protein models in biomedical research. Structure 17, 151–159. 10.1016/j.str.2008.12.014 PubMed DOI PMC

Scott W. R., Straus S. K. (2015). Determining and visualizing flexibility in protein structures. Proteins 83, 820–826. 10.1002/prot.24776 PubMed DOI

Smolarek D., Bertrand O., Czerwinski M., Colin Y., Etchebest C., de Brevern A. G. (2010). Multiple interests in structural models of DARC transmembrane protein. Transfus. Clin. Biol. 17, 184–196. 10.1016/j.tracli.2010.05.003 PubMed DOI

Suhre K., Sanejouand Y. H. (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 32, W610–W614. 10.1093/nar/gkh368 PubMed DOI PMC

Sunami T., Kono H. (2013). Local conformational changes in the DNA interfaces of proteins. PLoS ONE 8:e56080. 10.1371/journal.pone.0056080 PubMed DOI PMC

Suresh V., Ganesan K., Parthasarathy S. (2013). A protein block based fold recognition method for the annotation of twilight zone sequences. Protein Pept. Lett. 20, 249–254. 10.2174/092986613804910617 PubMed DOI

Svozil D., Kalina J., Omelka M., Schneider B. (2008). DNA conformations and their sequence preferences. Nucleic Acids Res. 36, 3690–3706. 10.1093/nar/gkn260 PubMed DOI PMC

Swapna L. S., Mahajan S., de Brevern A. G., Srinivasan N. (2012). Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. BMC Struct. Biol. 12:6. 10.1186/1472-6807-12-6 PubMed DOI PMC

Takada Y., Ye X., Simon S. (2007). The integrins. Genome Biol. 8:215. 10.1186/gb-2007-8-5-215 PubMed DOI PMC

Tanaka Y., Nureki O., Kurumizaka H., Fukai S., Kawaguchi S., Ikuta M., et al. . (2001). Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. EMBO J. 20, 6612–6618. 10.1093/emboj/20.23.6612 PubMed DOI PMC

Tiwari S. P., Fuglebakk E., Hollup S. M., Skjaerven L., Cragnolini T., Grindhaug S. H., et al. (2014). WEBnm@ v2.0: Web Server and Services for Comparing Protein Flexibility. BMC Bioinformatics 15:6597 10.1186/s12859-014-0427-6 PubMed DOI PMC

Tournamille C., Filipe A., Badaut C., Riottot M. M., Longacre S., Cartron J. P., et al. . (2005). Fine mapping of the Duffy antigen binding site for the Plasmodium vivax Duffy-binding protein. Mol. Biochem. Parasitol. 144, 100–103. 10.1016/j.molbiopara.2005.04.016 PubMed DOI

Tournamille C., Filipe A., Wasniowska K., Gane P., Lisowska E., Cartron J. P., et al. . (2003). Structure-function analysis of the extracellular domains of the Duffy antigen/receptor for chemokines: characterization of antibody and chemokine binding sites. Br. J. Haematol. 122, 1014–1023. 10.1046/j.1365-2141.2003.04533.x PubMed DOI

Touw W. G., Vriend G. (2014). BDB: databank of PDB files with consistent B-factors. Protein Eng. Des. Sel. 27, 457–462. 10.1093/protein/gzu044 PubMed DOI

Trott O., Siggers K., Rost B., Palmer A. G., 3rd. (2008). Protein conformational flexibility prediction using machine learning. J. Magn. Reson. 192, 37–47. 10.1016/j.jmr.2008.01.011 PubMed DOI PMC

Tung C. H., Huang J. W., Yang J. M. (2007). Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for fast protein structure database search. Genome Biol. 8:R31. 10.1186/gb-2007-8-3-r31 PubMed DOI PMC

Tung C. H., Yang J. M. (2007). fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies. Nucleic Acids Res. 35, W438–W443. 10.1093/nar/gkm288 PubMed DOI PMC

Tyagi M., Benros C., Martin J., de Brevern A. G. (2007). Description of the local protein structure II. Novel approaches, in Recent Research Developments in Protein Engineering, ed de Brevern A. G. (Trivandrum: Research Signpost; ), 23–36.

Uhart M., Bustos D. M. (2014). Protein intrinsic disorder and network connectivity. The case of 14-3-3 proteins. Front. Genet. 5:10. 10.3389/fgene.2014.00010 PubMed DOI PMC

Unger R., Harel D., Wherland S., Sussman J. L. (1989). A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins 5, 355–373. 10.1002/prot.340050410 PubMed DOI

Uversky V. N., Gillespie J. R., Fink A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41, 415–427. 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 PubMed DOI

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718. 10.1002/jcc.20291 PubMed DOI

Vihinen M., Torkkila E., Riikonen P. (1994). Accuracy of protein flexibility predictions. Proteins 19, 141–149. 10.1002/prot.340190207 PubMed DOI

Wu C. Y., Chen Y. C., Lim C. (2010). A structural-alphabet-based strategy for finding structural motifs across protein families. Nucleic Acids Res. 38:e150. 10.1093/nar/gkq478 PubMed DOI PMC

Xiao T., Takagi J., Coller B. S., Wang J. H., Springer T. A. (2004). Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67. 10.1038/nature02976 PubMed DOI PMC

Xin F., Radivojac P. (2012). Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics 28, 2905–2913. 10.1093/bioinformatics/bts541 PubMed DOI

Xue B., Uversky V. N. (2014). Intrinsic disorder in proteins involved in the innate antiviral immunity: another flexible side of a molecular arms race. J. Mol. Biol. 426, 1322–1350. 10.1016/j.jmb.2013.10.030 PubMed DOI

Yang J. M., Tung C. H. (2006). Protein structure database search and evolutionary classification. Nucleic Acids Res. 34, 3646–3659. 10.1093/nar/gkl395 PubMed DOI PMC

Zhang H., Kurgan L. (2014). Improved prediction of residue flexibility by embedding optimized amino acid grouping into RSA-based linear models. Amino Acids 46, 2665–2680. 10.1007/s00726-014-1817-9 PubMed DOI

Zhang T., Faraggi E., Zhou Y. (2010). Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction. Proteins 78, 3353–3362. 10.1002/prot.22842 PubMed DOI PMC

Zhang Y., Stec B., Godzik A. (2007). Between order and disorder in protein structures: analysis of “dual personality” fragments in proteins. Structure 15, 1141–1147. 10.1016/j.str.2007.07.012 PubMed DOI PMC

Zhu J., Luo B. H., Xiao T., Zhang C., Nishida N., Springer T. A. (2008). Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell 32, 849–861. 10.1016/j.molcel.2008.11.018 PubMed DOI PMC

Zimmermann O., Hansmann U. H. (2008). LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach. J. Chem. Inf. Model. 48, 1903–1908. 10.1021/ci800178a PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...