DNA conformations and their sequence preferences
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18477633
PubMed Central
PMC2441783
DOI
10.1093/nar/gkn260
PII: gkn260
Knihovny.cz E-zdroje
- MeSH
- A-DNA chemie MeSH
- cytosin chemie MeSH
- deoxyribonukleotidy chemie MeSH
- DNA vazebné proteiny chemie MeSH
- DNA chemie MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny MeSH
- křížová struktura DNA chemie MeSH
- ligandy MeSH
- nukleozomy chemie MeSH
- RNA chemie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- A-DNA MeSH
- cytosin MeSH
- deoxyribonukleotidy MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
- křížová struktura DNA MeSH
- ligandy MeSH
- nukleozomy MeSH
- RNA MeSH
The geometry of the phosphodiester backbone was analyzed for 7739 dinucleotides from 447 selected crystal structures of naked and complexed DNA. Ten torsion angles of a near-dinucleotide unit have been studied by combining Fourier averaging and clustering. Besides the known variants of the A-, B- and Z-DNA forms, we have also identified combined A + B backbone-deformed conformers, e.g. with alpha/gamma switches, and a few conformers with a syn orientation of bases occurring e.g. in G-quadruplex structures. A plethora of A- and B-like conformers show a close relationship between the A- and B-form double helices. A comparison of the populations of the conformers occurring in naked and complexed DNA has revealed a significant broadening of the DNA conformational space in the complexes, but the conformers still remain within the limits defined by the A- and B- forms. Possible sequence preferences, important for sequence-dependent recognition, have been assessed for the main A and B conformers by means of statistical goodness-of-fit tests. The structural properties of the backbone in quadruplexes, junctions and histone-core particles are discussed in further detail.
Zobrazit více v PubMed
Schultz SC, Shields GC, Steitz TA. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science. 1991;253:1001–1007. PubMed
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–260. PubMed
Matthews BW. No code for recognition. Nature. 1988;335:294–295. PubMed
Seeman NC, Rosenberg JM, Rich A. Sequence specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad.Sci. USA. 1976;73:804–808. PubMed PMC
Pabo CO, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J. Mol. Biol. 2000;301:597–624. PubMed
Suzuki M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Structure. 1994;2:317–326. PubMed
Suzuki M, Brenner SE, Gerstein M, Yagi N. DNA recognition code of transcription factors. Protein Eng. 1995;8:319–328. PubMed
Suzuki M, Gerstein M. Binding geometry of α-helices that recognize DNA. Proteins. 1995;23:525–535. PubMed
Mandel-Gutfreund Y, Schueler O, Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein–DNA complexes: in search of common principles. J. Mol. Biol. 1995;253:370–382. PubMed
Dickerson RE, Bansal M, Calladine CR, Diekmann S, Hunter WN, Kennard O, von Kitzing E, Lavery R, Nelson H.CM, Olson W, et al. Definitions and nomenclature of nucleic acid structure parameters. EMBO J. 1989;8:1–4. PubMed PMC
Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu X.-J, Neidle S, Shakked Z, et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. PubMed
Olson WK, Gorin AA, Lu X.-J, Hock LM, Zhurkin VB. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc. Natl Acad. Sci. USA. 1998;95:11163–11168. PubMed PMC
Dickerson RE. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 1998;26:1906–1926. PubMed PMC
El Hassan MA, Calladine CR. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol. 1998;282:331–343. PubMed
Packer MJ, Dauncey MP, Hunter CA. Sequence-dependent DNA structure: dinucleotide conformational maps. J. Mol. Biol. 2000;295:71–83. PubMed
Dickerson RE. DNA Structure from A to Z. how do you tell if a structure is right by reading the paper? Methods Enzymol. 1992;211:67–111. PubMed
Neidle S. Nucleic Acid Structure and Recognition. Oxford: Oxford University Press; 2002.
Felsenfeld G, Davies D, Rich A. Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 1957;79:2023–2024.
Morgan AR. Model for DNA replication by Kornberg's DNA polymerase. Nature. 1970;227:1310–1313. PubMed
Beerman TA, Lebowitz J. Further analysis of the altered secondary structure of superhelical DNA. Sensitivity to methylmercuric hydroxide a chemical probe for unpaired bases. J. Mol. Biol. 1973;79:451–470. PubMed
van de Sande JH, Ramsing NB, Germann MW, Elhorst W, Kalisch BW, von Kitzing E, Pon RT, Clegg RC, Jovin TM. Parallel stranded DNA. Science. 1988;241:551–557. PubMed
Schneider B, Neidle S, Berman HM. Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers. 1997;42:113–124. PubMed
Schneider B, Moravek Z, Berman HM. RNA conformational classes. Nucleic Acids Res. 2004;32:1666–1677. PubMed PMC
Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh S.-H, Srinivasan AR, Schneider B. The Nucleic Acid Database - a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 1992;63:751–759. PubMed PMC
Murray LJ, Arendall W.B., III, Richardson DC, Richardson JS. RNA backbone is rotameric. Proc. Natl Acad. Sci. USA. 2003;100:13904–13909. PubMed PMC
McRee DE. XtalView/Xfit- -A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 1999;125:156–165. PubMed
Reijmers TH, Wehrens R, Buydens LM. The influence of different structure representations on the clustering of an RNA nucleotides data set. J. Chem. Inf. Comput. Sci. 2001;41:1388–1394. PubMed
Ng HL, Kopka ML, Dickerson RE. The structure of a stable intermediate in the A <- -> B DNA helix transition. Proc. Natl Acad. Sci. USA. 2000;97:2035–2039. PubMed PMC
Bonferroni CE. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. Istituto Superiore di Scienze Economiche e Commerciali di Firenze Firenze. 1936;Vol. 8:3–62.
Agresti A. Categorical data analysis. 2nd. New York: Wiley; 2002.
Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Richardson DC, Ham D, Hershkowits E, Williams LD, Keating KS, et al. RNA backbone: consensus all-angle conformers and modular string nomenclature. RNA. 2008;14:465–481. PubMed PMC
Wang AH-J, Fujii S, van Boom JH, Rich A. Molecular structure of the octamer d(G-G-C-C-G-G-C-C): modified A-DNA. Proc. Natl Acad.Sci. USA. 1982;79:3968–3972. PubMed PMC
Shakked Z, Rabinovich D, Kennard O, Cruse W.BT, Salisbury SA, Viswamitra MA. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C) J. Mol. Biol. 1983;166:183–201. PubMed
Jain SC, Zon G, Sundaralingam M. Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC) Biochemistry. 1989;28:2360–2364. PubMed
Olson WK, Sussman JL. How flexible is the furanose ring? I. A comparison of experimental and theoretical studies. J. Am. Chem. Soc. 1982;104:270–278.
Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. USA. 1981;78:2179–2183. PubMed PMC
Grzeskowiak K, Yanagi K, Privé GG, Dickerson RE. The structure of B-helical C-G-A-T-C-G-A-T-C-G and comparison with C-C-A-A-C-G-T-T-G-G: the effect of base pair reversal. J. Biol. Chem. 1991;266:8861–8883. PubMed
Thorpe JH, Gale BC, Teixeira SC, Cardin CJ. Conformational and hydration effects of site-selective sodium, calcium and strontium ion binding to the DNA Holliday junction structure d(TCGGTACCGA)(4) J. Mol. Biol. 2003;327:97–109. PubMed
Chandrasekaran R, Arnott S. Springer, Berlin: 1989. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group VII/1b, Nucleic Acids.
Kim Y, Geiger JH, Hahn S, Sigler PB. Crystal structure of a yeast TBP/TATA-box complex. Nature. 1993;365:512–520. PubMed
Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J. Mol. Biol. 2003;332:783–793. PubMed
Savitha G, Viswamitra MA. An A-DNA structure with two independent duplexes in the asymmetric unit. Acta Cryst. D. 1999;55:1136–1143. PubMed
Lu X-J, Shakked Z, Olson WK. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. PubMed
Jones S, van Heyningen P, Berman HM, Thornton JM. Protein-DNA interactions: A structural analysis. J. Mol. Biol. 1999;287:877–896. PubMed
Ng H-L, Dickerson RE. Mediation of the A/B-DNA helix transition by G-tracts in the crystal structure of duplex CATGGGCCCATG. Nucleic Acids Res. 2002;30:4061–4067. PubMed PMC
Doucet J, Benoit J.-P, Cruse W.BT, Prange T, Kennard O. Coexistence of A- and B-form DNA in a single crystal lattice. Nature. 1989;337:190–192. PubMed
Malinina L, Fernandez LG, Huynh-Dinh T, Subirana JA. Structure of the d(CGCCCGCGGGCG) dodecamer: a kinked A-DNA molecule showing some B-DNA features. J. Mol. Biol. 1999;285:1679–1690. PubMed
Vargason JM, Henderson K, Ho PS. A crystallographic map of the transition from B-DNA to A-DNA. Proc. Natl Acad. Sci. USA. 2001;98:7265–7270. PubMed PMC
El Hassan MA, Calladine CR. Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. R. Soc. Lond. A. 1997;355:43–100.
Patikoglou GA, Kim JL, Sun L, Yang SH, Kodadek T, Burley SK. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 1999;13:3217–3230. PubMed PMC
Leontis NB, Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. PubMed PMC
Wang AH-J, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel GA, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282:680–686. PubMed
Wang AH-J, Quigley GJ, Kolpak FJ, van der Marel GA, van Boom JH, Rich A. Left-handed double helical DNA: variations in the backbone conformation. Science. 1981;211:171–176. PubMed
Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang A.H.-J. The molecular structure of the left-handed Z-DNA double helix at 1.0-Å atomic resolution. J. Biol. Chem. 1989;264:7921–7935. PubMed
Chen L, Cai L, Zhang X, Rich A. Crystal structure of a four-stranded intercalated DNA: d(C4) Biochemistry. 1994;33:13540–13546. PubMed
Theobald DL, Schultz SC. Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes. EMBO J. 2003;22:4314–4324. PubMed PMC
Steffen NR, Murphy SD, Lathrop RH, Opel ML, Tolleri L, Hatfield GW. The role of DNA deformation energy at individual base steps for the identification of DNA-protein binding sites. Genome Inform. 2002;13:153–162. PubMed
Spolar RS, Record M.T., Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994;263:777–784. PubMed
Dickerson RE, Chiu TK. Helix bending as a factor in protein/DNA recognition. Biopolymers. 1997;44:361–403. PubMed
Kono H, Sarai A. Structure-based prediction of DNA target sites by regulatory proteins. Proteins. 1999;35:114–131. PubMed
Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993;12:1781–1795. PubMed PMC
Horton NC, Perona JJ. Role of protein-induced bending in the specificity of DNA-recognition: Crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT) J. Mol. Biol. 1998;277:779–787. PubMed
Burgi HB, Dunitz JD. From crystal statics to chemical-dynamics. Acc. Chem. Res. 1983;16:153–161.
Dunitz JD. From crystal statics to chemical dynamics. Acc. Chem. Res. 1983;16:153–161.
Dickerson RE, Grzeskowiak K, Grzeskowiak M, Kopka ML, Larsen T, Lipanov A, Prive GG, Quintana J, Schultz P, Yanagi K, et al. Polymorphism, packing, resolution, and reliability in single-crystal DNA oligomer analyses. Nucl. Nucl. 1991;10:1.
Berman HM. Crystal studies of B-DNA: the answers and the questions. Biopolymers. 1997;44:23–44. PubMed
Dickerson RE, Goodsell DS, Neidle S. … the tyranny of the lattice. Proc. Natl Acad. Sci. USA. 1994;91:3579–3583. PubMed PMC
Suzuki M, Yagi N. Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res. 1995;23:2083–2091. PubMed PMC
Djuranovic D, Hartmann B. DNA fine structure and dynamics in crystals and in solution: the impact of BI/BII backbone conformations. Biopolymers. 2004;73:356–368. PubMed
Bertrand H, Ha-Duong T, Fermandjian S, Hartmann B. Flexibility of the B-DNA backbone: effects of local and neighbouring sequences on pyrimidine-purine steps. Nucleic Acids Res. 1998;26:1261–1267. PubMed PMC
Lefebvre A, Mauffret O, Hartmann B, Lescot E, Fermandjian S. Structural behavior of the CpG step in two related oligonucleotides reflects its malleability in solution. Biochemistry. 1995;34:12019–12028. PubMed
Baikalov I, Grzeskowiak K, Yanagi K, Quintana J, Dickerson RE. The crystal structure of the trigonal decamer C-G-A-T-C-G-6meA-T-C-G: a B-DNA helix with 10.6 base-pairs per turn. J. Mol. Biol. 1993;231:768–784. PubMed
Lefebvre A, Mauffret O, Lescot E, Hartmann B, Fermandjian S. Solution structure of the CpG containing d(CTTCGAAG)2 oligonucleotide: NMR data and energy calculations are compatible with a BI/BII equilibrium at CpG. Biochemistry. 1996;35:12560–12569. PubMed
Zabin HB, Horvath MP, Terwilliger TC. Approaches to predicting effects of single amino acid substitutions on the function of a protein. Biochemistry. 1991;30:6230–6240. PubMed
Haider S, Parkinson GN, Neidle S. Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J. Mol. Biol. 2002;320:189–200. PubMed
Weil J, Min TP, Yang C, Wang SR, Sutherland C, Sinha N, Kang CH. Stabilization of the i-motif by intramolecular adenine-adenine-thymine base triple in the structure of d(ACCCT) Acta Cryst. D. 1999;55:422–429. PubMed
Kondo J, Adachi W, Umeda S, Sunami T, Takenaka A. Crystal structures of a DNA octaplex with I-motif of G-quartets and its splitting into two quadruplexes suggest a folding mechanism of eight tandem repeats. Nucleic Acids Res. 2004;32:2541–2549. PubMed PMC
Lilley DM. Structures of helical junctions in nucleic acids. Q. Rev. Biophys. 2000;33:109–159. PubMed
Gopaul DN, Guo F, Van Duyne GD. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 1998;17:4175–4187. PubMed PMC
Guo F, Gopaul DN, Van Duyne GD. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl Acad. Sci. USA. 1999;96:7143–7148. PubMed PMC
Eichman BF, Vargason JM, Mooers B.HM, Ho PS. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA. 2000;97:3971–3976. PubMed PMC
Thorpe JH, Teixeira SC, Gale BC, Cardin CJ. Structural characterization of a new crystal form of the four-way Holliday junction formed by the DNA sequence d(CCGGTACCGG)2: sequence versus lattice? Acta Cryst. D. 2002;58:567–569. PubMed
Ortiz-Lombardí M, González A, Eritja R, Aymamí J, Azorín F, Coll M. Crystal structure of a DNA holliday junction. Nat. Struct. Biol. 1999;6:913–917. PubMed
Hays FA, Teegarden A, Jones Z.JR, Harms M, Raup D, Watson J, Cavaliere E, Ho PS. How sequence defines structure: A crystallographic map of DNA structure and conformation. Proc. Natl Acad. Sci. USA. 2005;102:7157–7162. PubMed PMC
Woods KC, Martin SS, Chu V, Baldwin EP. Quasiequivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a Lox three-way DNA junction. J. Mol. Biol. 2001;313:49–69. PubMed
Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J. A genomic code for nucleosome positioning. Nature. 2006;442:772–778. PubMed PMC
Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–150. PubMed
Ong MS, Richmond TJ, Davey CA. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 2007;368:1067–1074. PubMed
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002;319:1097–1113. PubMed
Muthurajan UM, Bao Y, Forsberg LJ, Edayathumangalam RS, Dyer PN, White CL, Luger K. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J. 2004;23:260–271. PubMed PMC
Edayathumangalam RS, Weyermann P, Gottesfeld JM, Dervan PB, Luger K. Molecular recognition of the nucleosomal ‘supergroove’. Proc. Natl Acad. Sci. USA. 2004;101:6864–6869. PubMed PMC
Suto RK, Edayathumangalam RS, White CL, Melander C, Gottesfeld JM, Dervan PB, Luger K. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 2003;326:371–380. PubMed
Murthy VL, Srinivasan R, Draper DE, Rose GD. A complete conformational map for RNA. J. Mol. Biol. 1999;291:313–327. PubMed
Hershkovitz E, Tannenbaum E, Howerton SB, Sheth A, Tannenbaum A, Williams LD. Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA. Nucleic Acids Res. 2003;31:6249–6257. PubMed PMC
Sims GE, Kim S.-H. Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes. Nucleic Acids Res. 2003;31:5607–5616. PubMed PMC
Sykes MT, Levitt M. Describing RNA structure by libraries of clustered nucleotide doublets. J. Mol. Biol. 2005;351:26–38. PubMed PMC
Schultze P, Smith FW, Feigon J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG) Structure. 1994;2:221–233. PubMed
Wang Y, Patel DJ. Solution structure of a parallel-stranded G-quadruplex DNA. J. Mol. Biol. 1993;234:1171–1183. PubMed
Hargreaves D, Rice DW, Sedelnikova SE, Artymiuk PJ, Lloyd RG, Rafferty JB. Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 A resolution. Nat. Struct. Biol. 1998;5:441–446. PubMed
Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field
When will RNA get its AlphaFold moment?
Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org
A unified dinucleotide alphabet describing both RNA and DNA structures
A DNA structural alphabet provides new insight into DNA flexibility
DNATCO: assignment of DNA conformers at dnatco.org
Protein flexibility in the light of structural alphabets
Bioinformatic analysis of the protein/DNA interface
Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer
Automatic workflow for the classification of local DNA conformations
A measure of bending in nucleic acids structures applied to A-tract DNA