DNA conformations and their sequence preferences

. 2008 Jun ; 36 (11) : 3690-706. [epub] 20080513

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18477633

The geometry of the phosphodiester backbone was analyzed for 7739 dinucleotides from 447 selected crystal structures of naked and complexed DNA. Ten torsion angles of a near-dinucleotide unit have been studied by combining Fourier averaging and clustering. Besides the known variants of the A-, B- and Z-DNA forms, we have also identified combined A + B backbone-deformed conformers, e.g. with alpha/gamma switches, and a few conformers with a syn orientation of bases occurring e.g. in G-quadruplex structures. A plethora of A- and B-like conformers show a close relationship between the A- and B-form double helices. A comparison of the populations of the conformers occurring in naked and complexed DNA has revealed a significant broadening of the DNA conformational space in the complexes, but the conformers still remain within the limits defined by the A- and B- forms. Possible sequence preferences, important for sequence-dependent recognition, have been assessed for the main A and B conformers by means of statistical goodness-of-fit tests. The structural properties of the backbone in quadruplexes, junctions and histone-core particles are discussed in further detail.

Zobrazit více v PubMed

Schultz SC, Shields GC, Steitz TA. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science. 1991;253:1001–1007. PubMed

Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–260. PubMed

Matthews BW. No code for recognition. Nature. 1988;335:294–295. PubMed

Seeman NC, Rosenberg JM, Rich A. Sequence specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad.Sci. USA. 1976;73:804–808. PubMed PMC

Pabo CO, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J. Mol. Biol. 2000;301:597–624. PubMed

Suzuki M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Structure. 1994;2:317–326. PubMed

Suzuki M, Brenner SE, Gerstein M, Yagi N. DNA recognition code of transcription factors. Protein Eng. 1995;8:319–328. PubMed

Suzuki M, Gerstein M. Binding geometry of α-helices that recognize DNA. Proteins. 1995;23:525–535. PubMed

Mandel-Gutfreund Y, Schueler O, Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein–DNA complexes: in search of common principles. J. Mol. Biol. 1995;253:370–382. PubMed

Dickerson RE, Bansal M, Calladine CR, Diekmann S, Hunter WN, Kennard O, von Kitzing E, Lavery R, Nelson H.CM, Olson W, et al. Definitions and nomenclature of nucleic acid structure parameters. EMBO J. 1989;8:1–4. PubMed PMC

Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu X.-J, Neidle S, Shakked Z, et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. PubMed

Olson WK, Gorin AA, Lu X.-J, Hock LM, Zhurkin VB. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc. Natl Acad. Sci. USA. 1998;95:11163–11168. PubMed PMC

Dickerson RE. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 1998;26:1906–1926. PubMed PMC

El Hassan MA, Calladine CR. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol. 1998;282:331–343. PubMed

Packer MJ, Dauncey MP, Hunter CA. Sequence-dependent DNA structure: dinucleotide conformational maps. J. Mol. Biol. 2000;295:71–83. PubMed

Dickerson RE. DNA Structure from A to Z. how do you tell if a structure is right by reading the paper? Methods Enzymol. 1992;211:67–111. PubMed

Neidle S. Nucleic Acid Structure and Recognition. Oxford: Oxford University Press; 2002.

Felsenfeld G, Davies D, Rich A. Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 1957;79:2023–2024.

Morgan AR. Model for DNA replication by Kornberg's DNA polymerase. Nature. 1970;227:1310–1313. PubMed

Beerman TA, Lebowitz J. Further analysis of the altered secondary structure of superhelical DNA. Sensitivity to methylmercuric hydroxide a chemical probe for unpaired bases. J. Mol. Biol. 1973;79:451–470. PubMed

van de Sande JH, Ramsing NB, Germann MW, Elhorst W, Kalisch BW, von Kitzing E, Pon RT, Clegg RC, Jovin TM. Parallel stranded DNA. Science. 1988;241:551–557. PubMed

Schneider B, Neidle S, Berman HM. Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers. 1997;42:113–124. PubMed

Schneider B, Moravek Z, Berman HM. RNA conformational classes. Nucleic Acids Res. 2004;32:1666–1677. PubMed PMC

Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh S.-H, Srinivasan AR, Schneider B. The Nucleic Acid Database - a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 1992;63:751–759. PubMed PMC

Murray LJ, Arendall W.B., III, Richardson DC, Richardson JS. RNA backbone is rotameric. Proc. Natl Acad. Sci. USA. 2003;100:13904–13909. PubMed PMC

McRee DE. XtalView/Xfit- -A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 1999;125:156–165. PubMed

Reijmers TH, Wehrens R, Buydens LM. The influence of different structure representations on the clustering of an RNA nucleotides data set. J. Chem. Inf. Comput. Sci. 2001;41:1388–1394. PubMed

Ng HL, Kopka ML, Dickerson RE. The structure of a stable intermediate in the A <- -> B DNA helix transition. Proc. Natl Acad. Sci. USA. 2000;97:2035–2039. PubMed PMC

Bonferroni CE. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. Istituto Superiore di Scienze Economiche e Commerciali di Firenze Firenze. 1936;Vol. 8:3–62.

Agresti A. Categorical data analysis. 2nd. New York: Wiley; 2002.

Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Richardson DC, Ham D, Hershkowits E, Williams LD, Keating KS, et al. RNA backbone: consensus all-angle conformers and modular string nomenclature. RNA. 2008;14:465–481. PubMed PMC

Wang AH-J, Fujii S, van Boom JH, Rich A. Molecular structure of the octamer d(G-G-C-C-G-G-C-C): modified A-DNA. Proc. Natl Acad.Sci. USA. 1982;79:3968–3972. PubMed PMC

Shakked Z, Rabinovich D, Kennard O, Cruse W.BT, Salisbury SA, Viswamitra MA. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C) J. Mol. Biol. 1983;166:183–201. PubMed

Jain SC, Zon G, Sundaralingam M. Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC) Biochemistry. 1989;28:2360–2364. PubMed

Olson WK, Sussman JL. How flexible is the furanose ring? I. A comparison of experimental and theoretical studies. J. Am. Chem. Soc. 1982;104:270–278.

Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. USA. 1981;78:2179–2183. PubMed PMC

Grzeskowiak K, Yanagi K, Privé GG, Dickerson RE. The structure of B-helical C-G-A-T-C-G-A-T-C-G and comparison with C-C-A-A-C-G-T-T-G-G: the effect of base pair reversal. J. Biol. Chem. 1991;266:8861–8883. PubMed

Thorpe JH, Gale BC, Teixeira SC, Cardin CJ. Conformational and hydration effects of site-selective sodium, calcium and strontium ion binding to the DNA Holliday junction structure d(TCGGTACCGA)(4) J. Mol. Biol. 2003;327:97–109. PubMed

Chandrasekaran R, Arnott S. Springer, Berlin: 1989. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group VII/1b, Nucleic Acids.

Kim Y, Geiger JH, Hahn S, Sigler PB. Crystal structure of a yeast TBP/TATA-box complex. Nature. 1993;365:512–520. PubMed

Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J. Mol. Biol. 2003;332:783–793. PubMed

Savitha G, Viswamitra MA. An A-DNA structure with two independent duplexes in the asymmetric unit. Acta Cryst. D. 1999;55:1136–1143. PubMed

Lu X-J, Shakked Z, Olson WK. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. PubMed

Jones S, van Heyningen P, Berman HM, Thornton JM. Protein-DNA interactions: A structural analysis. J. Mol. Biol. 1999;287:877–896. PubMed

Ng H-L, Dickerson RE. Mediation of the A/B-DNA helix transition by G-tracts in the crystal structure of duplex CATGGGCCCATG. Nucleic Acids Res. 2002;30:4061–4067. PubMed PMC

Doucet J, Benoit J.-P, Cruse W.BT, Prange T, Kennard O. Coexistence of A- and B-form DNA in a single crystal lattice. Nature. 1989;337:190–192. PubMed

Malinina L, Fernandez LG, Huynh-Dinh T, Subirana JA. Structure of the d(CGCCCGCGGGCG) dodecamer: a kinked A-DNA molecule showing some B-DNA features. J. Mol. Biol. 1999;285:1679–1690. PubMed

Vargason JM, Henderson K, Ho PS. A crystallographic map of the transition from B-DNA to A-DNA. Proc. Natl Acad. Sci. USA. 2001;98:7265–7270. PubMed PMC

El Hassan MA, Calladine CR. Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. R. Soc. Lond. A. 1997;355:43–100.

Patikoglou GA, Kim JL, Sun L, Yang SH, Kodadek T, Burley SK. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 1999;13:3217–3230. PubMed PMC

Leontis NB, Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. PubMed PMC

Wang AH-J, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel GA, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282:680–686. PubMed

Wang AH-J, Quigley GJ, Kolpak FJ, van der Marel GA, van Boom JH, Rich A. Left-handed double helical DNA: variations in the backbone conformation. Science. 1981;211:171–176. PubMed

Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang A.H.-J. The molecular structure of the left-handed Z-DNA double helix at 1.0-Å atomic resolution. J. Biol. Chem. 1989;264:7921–7935. PubMed

Chen L, Cai L, Zhang X, Rich A. Crystal structure of a four-stranded intercalated DNA: d(C4) Biochemistry. 1994;33:13540–13546. PubMed

Theobald DL, Schultz SC. Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes. EMBO J. 2003;22:4314–4324. PubMed PMC

Steffen NR, Murphy SD, Lathrop RH, Opel ML, Tolleri L, Hatfield GW. The role of DNA deformation energy at individual base steps for the identification of DNA-protein binding sites. Genome Inform. 2002;13:153–162. PubMed

Spolar RS, Record M.T., Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994;263:777–784. PubMed

Dickerson RE, Chiu TK. Helix bending as a factor in protein/DNA recognition. Biopolymers. 1997;44:361–403. PubMed

Kono H, Sarai A. Structure-based prediction of DNA target sites by regulatory proteins. Proteins. 1999;35:114–131. PubMed

Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993;12:1781–1795. PubMed PMC

Horton NC, Perona JJ. Role of protein-induced bending in the specificity of DNA-recognition: Crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT) J. Mol. Biol. 1998;277:779–787. PubMed

Burgi HB, Dunitz JD. From crystal statics to chemical-dynamics. Acc. Chem. Res. 1983;16:153–161.

Dunitz JD. From crystal statics to chemical dynamics. Acc. Chem. Res. 1983;16:153–161.

Dickerson RE, Grzeskowiak K, Grzeskowiak M, Kopka ML, Larsen T, Lipanov A, Prive GG, Quintana J, Schultz P, Yanagi K, et al. Polymorphism, packing, resolution, and reliability in single-crystal DNA oligomer analyses. Nucl. Nucl. 1991;10:1.

Berman HM. Crystal studies of B-DNA: the answers and the questions. Biopolymers. 1997;44:23–44. PubMed

Dickerson RE, Goodsell DS, Neidle S. … the tyranny of the lattice. Proc. Natl Acad. Sci. USA. 1994;91:3579–3583. PubMed PMC

Suzuki M, Yagi N. Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res. 1995;23:2083–2091. PubMed PMC

Djuranovic D, Hartmann B. DNA fine structure and dynamics in crystals and in solution: the impact of BI/BII backbone conformations. Biopolymers. 2004;73:356–368. PubMed

Bertrand H, Ha-Duong T, Fermandjian S, Hartmann B. Flexibility of the B-DNA backbone: effects of local and neighbouring sequences on pyrimidine-purine steps. Nucleic Acids Res. 1998;26:1261–1267. PubMed PMC

Lefebvre A, Mauffret O, Hartmann B, Lescot E, Fermandjian S. Structural behavior of the CpG step in two related oligonucleotides reflects its malleability in solution. Biochemistry. 1995;34:12019–12028. PubMed

Baikalov I, Grzeskowiak K, Yanagi K, Quintana J, Dickerson RE. The crystal structure of the trigonal decamer C-G-A-T-C-G-6meA-T-C-G: a B-DNA helix with 10.6 base-pairs per turn. J. Mol. Biol. 1993;231:768–784. PubMed

Lefebvre A, Mauffret O, Lescot E, Hartmann B, Fermandjian S. Solution structure of the CpG containing d(CTTCGAAG)2 oligonucleotide: NMR data and energy calculations are compatible with a BI/BII equilibrium at CpG. Biochemistry. 1996;35:12560–12569. PubMed

Zabin HB, Horvath MP, Terwilliger TC. Approaches to predicting effects of single amino acid substitutions on the function of a protein. Biochemistry. 1991;30:6230–6240. PubMed

Haider S, Parkinson GN, Neidle S. Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J. Mol. Biol. 2002;320:189–200. PubMed

Weil J, Min TP, Yang C, Wang SR, Sutherland C, Sinha N, Kang CH. Stabilization of the i-motif by intramolecular adenine-adenine-thymine base triple in the structure of d(ACCCT) Acta Cryst. D. 1999;55:422–429. PubMed

Kondo J, Adachi W, Umeda S, Sunami T, Takenaka A. Crystal structures of a DNA octaplex with I-motif of G-quartets and its splitting into two quadruplexes suggest a folding mechanism of eight tandem repeats. Nucleic Acids Res. 2004;32:2541–2549. PubMed PMC

Lilley DM. Structures of helical junctions in nucleic acids. Q. Rev. Biophys. 2000;33:109–159. PubMed

Gopaul DN, Guo F, Van Duyne GD. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 1998;17:4175–4187. PubMed PMC

Guo F, Gopaul DN, Van Duyne GD. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl Acad. Sci. USA. 1999;96:7143–7148. PubMed PMC

Eichman BF, Vargason JM, Mooers B.HM, Ho PS. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA. 2000;97:3971–3976. PubMed PMC

Thorpe JH, Teixeira SC, Gale BC, Cardin CJ. Structural characterization of a new crystal form of the four-way Holliday junction formed by the DNA sequence d(CCGGTACCGG)2: sequence versus lattice? Acta Cryst. D. 2002;58:567–569. PubMed

Ortiz-Lombardí M, González A, Eritja R, Aymamí J, Azorín F, Coll M. Crystal structure of a DNA holliday junction. Nat. Struct. Biol. 1999;6:913–917. PubMed

Hays FA, Teegarden A, Jones Z.JR, Harms M, Raup D, Watson J, Cavaliere E, Ho PS. How sequence defines structure: A crystallographic map of DNA structure and conformation. Proc. Natl Acad. Sci. USA. 2005;102:7157–7162. PubMed PMC

Woods KC, Martin SS, Chu V, Baldwin EP. Quasiequivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a Lox three-way DNA junction. J. Mol. Biol. 2001;313:49–69. PubMed

Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J. A genomic code for nucleosome positioning. Nature. 2006;442:772–778. PubMed PMC

Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–150. PubMed

Ong MS, Richmond TJ, Davey CA. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 2007;368:1067–1074. PubMed

Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002;319:1097–1113. PubMed

Muthurajan UM, Bao Y, Forsberg LJ, Edayathumangalam RS, Dyer PN, White CL, Luger K. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J. 2004;23:260–271. PubMed PMC

Edayathumangalam RS, Weyermann P, Gottesfeld JM, Dervan PB, Luger K. Molecular recognition of the nucleosomal ‘supergroove’. Proc. Natl Acad. Sci. USA. 2004;101:6864–6869. PubMed PMC

Suto RK, Edayathumangalam RS, White CL, Melander C, Gottesfeld JM, Dervan PB, Luger K. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 2003;326:371–380. PubMed

Murthy VL, Srinivasan R, Draper DE, Rose GD. A complete conformational map for RNA. J. Mol. Biol. 1999;291:313–327. PubMed

Hershkovitz E, Tannenbaum E, Howerton SB, Sheth A, Tannenbaum A, Williams LD. Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA. Nucleic Acids Res. 2003;31:6249–6257. PubMed PMC

Sims GE, Kim S.-H. Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes. Nucleic Acids Res. 2003;31:5607–5616. PubMed PMC

Sykes MT, Levitt M. Describing RNA structure by libraries of clustered nucleotide doublets. J. Mol. Biol. 2005;351:26–38. PubMed PMC

Schultze P, Smith FW, Feigon J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG) Structure. 1994;2:221–233. PubMed

Wang Y, Patel DJ. Solution structure of a parallel-stranded G-quadruplex DNA. J. Mol. Biol. 1993;234:1171–1183. PubMed

Hargreaves D, Rice DW, Sedelnikova SE, Artymiuk PJ, Lloyd RG, Rafferty JB. Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 A resolution. Nat. Struct. Biol. 1998;5:441–446. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field

. 2025 Jan 28 ; 21 (2) : 833-846. [epub] 20250102

When will RNA get its AlphaFold moment?

. 2023 Oct 13 ; 51 (18) : 9522-9532.

Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org

. 2020 Sep 01 ; 76 (Pt 9) : 805-813. [epub] 20200817

A unified dinucleotide alphabet describing both RNA and DNA structures

. 2020 Jun 19 ; 48 (11) : 6367-6381.

Enriched Conformational Sampling of DNA and Proteins with a Hybrid Hamiltonian Derived from the Protein Data Bank

. 2018 Oct 30 ; 19 (11) : . [epub] 20181030

A DNA structural alphabet provides new insight into DNA flexibility

. 2018 Jan 01 ; 74 (Pt 1) : 52-64. [epub] 20180101

DNATCO: assignment of DNA conformers at dnatco.org

. 2016 Jul 08 ; 44 (W1) : W284-7. [epub] 20160505

Protein flexibility in the light of structural alphabets

. 2015 ; 2 () : 20. [epub] 20150527

Bioinformatic analysis of the protein/DNA interface

. 2014 Mar ; 42 (5) : 3381-94. [epub] 20131211

Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer

. 2013 ; 9 (1) : 707-721.

Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations

. 2013 Jul 03 ; 135 (26) : 9785-96. [epub] 20130619

Automatic workflow for the classification of local DNA conformations

. 2013 Jun 25 ; 14 () : 205. [epub] 20130625

Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

. 2013 May 14 ; 9 (5) : 2339-2354.

Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA

. 2012 Jul 10 ; 8 (7) : 2506-2520. [epub] 20120605

Quantum chemical studies of nucleic acids: can we construct a bridge to the RNA structural biology and bioinformatics communities?

. 2010 Dec 09 ; 114 (48) : 15723-41. [epub] 20101104

A measure of bending in nucleic acids structures applied to A-tract DNA

. 2010 Jun ; 38 (10) : 3414-22. [epub] 20100131

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...