Bioinformatic analysis of the protein/DNA interface
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24335080
PubMed Central
PMC3950675
DOI
10.1093/nar/gkt1273
PII: gkt1273
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny chemie MeSH
- DNA chemie MeSH
- fosfáty MeSH
- interpretace statistických dat MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- vazba proteinů MeSH
- voda chemie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- fosfáty MeSH
- voda MeSH
To investigate the principles driving recognition between proteins and DNA, we analyzed more than thousand crystal structures of protein/DNA complexes. We classified protein and DNA conformations by structural alphabets, protein blocks [de Brevern, Etchebest and Hazout (2000) (Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet., 41:271-287)] and dinucleotide conformers [Svozil, Kalina, Omelka and Schneider (2008) (DNA conformations and their sequence preferences. Nucleic Acids Res., 36:3690-3706)], respectively. Assembling the mutually interacting protein blocks and dinucleotide conformers into 'interaction matrices' revealed their correlations and conformer preferences at the interface relative to their occurrence outside the interface. The analyzed data demonstrated important differences between complexes of various types of proteins such as transcription factors and nucleases, distinct interaction patterns for the DNA minor groove relative to the major groove and phosphate and importance of water-mediated contacts. Water molecules mediate proportionally the largest number of contacts in the minor groove and form the largest proportion of contacts in complexes of transcription factors. The generally known induction of A-DNA forms by complexation was more accurately attributed to A-like and intermediate A/B conformers rare in naked DNA molecules.
Zobrazit více v PubMed
Matthews BW. No code for recognition. Nature. 1988;335:294–295. PubMed
Pabo CO, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J. Mol. Biol. 2000;301:597–624. PubMed
Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 2010;79:233–269. PubMed PMC
Sunami T, Kono H. Local conformational changes in the DNA interfaces of proteins. PLoS One. 2013;8:e56080. PubMed PMC
Seeman NC, Rosenberg JM, Rich A. Sequence specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA. 1976;73:804–808. PubMed PMC
Dickerson R. In: Oxford Handbook of Nucleic Acid Structure. Neidle S, editor. Oxford: Oxford University Press; 1999. pp. 145–198.
Stormo GD, Zhao Y. Determining the specificity of protein-DNA interactions. Nat. Rev. Genet. 2010;11:751–760. PubMed
Sarai A, Takeda Y. Lambda repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically. Proc. Natl Acad. Sci. USA. 1989;86:6513–6517. PubMed PMC
Sarai A, Kono H. Protein-DNA recognition patterns and predictions. Annu. Rev. Biophys. Biomol. Struct. 2005;34:379–398. PubMed
Ahmad S, Keskin O, Sarai A, Nussinov R. Protein-DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Res. 2008;36:5922–5932. PubMed PMC
Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 1992;61:1053–1095. PubMed
Luscombe NM, Austin SE, Berman HM, Thornton JM. An overview of the structures of protein-DNA complexes. Genome Biol. 2000;1:1–37. PubMed PMC
Suzuki M, Gerstein M, Yagi N. Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res. 1994;22:3397–3405. PubMed PMC
Choo Y, Klug A. Physical basis of a protein-DNA recognition code. Curr. Opin. Struct. Biol. 1997;7:117–125. PubMed
Mandel-Gutfreund Y, Margalit H. Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. Nucleic Acids Res. 1998;26:2306–2312. PubMed PMC
Suzuki M, Gerstein M. Binding geometry of alpha-helices that recognize DNA. Proteins. 1995;23:525–535. PubMed
McLaughlin WA, Berman HM. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. J. Mol. Biol. 2003;330:43–55. PubMed
Jones S, van Heyningen P, Berman HM, Thornton JM. Protein-DNA interactions: a structural analysis. J. Mol. Biol. 1999;287:877–896. PubMed
Luscombe NM, Thornton JM. Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J. Mol. Biol. 2002;320:991–1009. PubMed
Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R. Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins. 2005;61:258–271. PubMed
Nadassy K, Wodak SJ, Janin J. Structural features of protein-nucleic acid recognition sites. Biochemistry. 1999;38:1999–2017. PubMed
Jones S, Shanahan HP, Berman HM, Thornton JM. Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Res. 2003;31:7189–7198. PubMed PMC
Tsuchiya Y, Kinoshita K, Nakamura H. Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces. Proteins. 2004;55:885–894. PubMed
Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. The role of DNA shape in protein-DNA recognition. Nature. 2009;461:1248–1253. PubMed PMC
Mandel-Gutfreund Y, Schueler O, Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles. J. Mol. Biol. 1995;253:370–382. PubMed
Luscombe NM, Laskowski RA, Thornton JM. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 2001;29:2860–2874. PubMed PMC
Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB. A role for CH•••O interactions in protein-DNA recognition. J. Mol. Biol. 1998;277:1129–1140. PubMed
Biot C, Wintjens R, Rooman M. Stair motifs at protein-DNA interfaces: nonadditivity of H-bond, stacking, and cation-pi interactions. J. Am. Chem. Soc. 2004;126:6220–6221. PubMed
Westhof E. Water: an integral part of nucleic acid structure. Annu. Rev. Biophys. Chem. 1988;17:125–144. PubMed
Schwabe JW. The role of water in protein-DNA interactions. Curr. Opin. Struct. Biol. 1997;7:126–134. PubMed
Berman HM, Schneider B. In: Oxford Handbook of Nucleic Acid Structure. Neidle S, editor. Oxford: Oxford University Press; 1999. pp. 295–312.
Jayaram B, Jain T. The role of water in protein-DNA recognition. Annu. Rev. Biophys. Biomol. Struct. 2004;33:343–361. PubMed
Ponomarenko JV, Bourne PE, Shindyalov IN. Building an automated classification of DNA-binding protein domains. Bioinformatics. 2002;18(Suppl. 2):S192–S201. PubMed
Sathyapriya R, Vijayabaskar MS, Vishveshwara S. Insights into protein-DNA interactions through structure network analysis. PLoS Comput. Biol. 2008;4:e1000170. PubMed PMC
Biswas S, Guharoy M, Chakrabarti P. Dissection, residue conservation, and structural classification of protein-DNA interfaces. Proteins. 2009;74:643–654. PubMed
Siggers TW, Silkov A, Honig B. Structural alignment of protein—DNA interfaces: insights into the determinants of binding specificity. J. Mol. Biol. 2005;345:1027–1045. PubMed
Prabakaran P, Siebers JG, Ahmad S, Gromiha MM, Singarayan MG, Sarai A. Classification of protein-DNA complexes based on structural descriptors. Structure. 2006;14:1355–1367. PubMed
Unger R, Harel D, Wherland S, Sussman JL. A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins. 1989;5:355–373. PubMed
Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 1998;281:565–577. PubMed
Kolodny R, Koehl P, Guibas L, Levitt M. Small libraries of protein fragments model native protein structures accurately. J. Mol. Biol. 2002;323:297–307. PubMed
Guyon F, Camproux AC, Hochez J, Tuffery P. SA-Search: a web tool for protein structure mining based on a Structural Alphabet. Nucleic Acids Res. 2004;32:W545–W548. PubMed PMC
Fourrier L, Benros C, de Brevern AG. Use of a structural alphabet for analysis of short loops connecting repetitive structures. BMC Bioinform. 2004;5:58. PubMed PMC
Benros C, de Brevern AG, Etchebest C, Hazout S. Assessing a novel approach for predicting local 3D protein structures from sequence. Prot. Struct. Funct. Bioinform. 2006;62:865–880. PubMed
de Brevern AG, Etchebest C, Hazout S. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet. 2000;41:271–287. PubMed
Offmann B, Tyagi M, de Brevern AG. Local protein structures. Curr. Bioinform. 2007;2:165–202.
Svozil D, Kalina J, Omelka M, Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008;36:3690–3706. PubMed PMC
Berman HM, Westbrook J, Feng Z, Iype L, Schneider B, Zardecki C. The Nucleic Acid Database. Acta Crystallogr. D Biol. Crystallogr. 2002;58:899–907. PubMed
Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002;58:889–898. PubMed
Davis IW, Murray LW, Richardson JS, Richardson DC. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 2004;32:W615–W619. PubMed PMC
Chen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. PubMed PMC
Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL. The Pfam protein families database. Nucleic Acids Res. 2002;30:276–280. PubMed PMC
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38, 27–38. PubMed
Joseph AP, Agarwal G, Mahajan S, Gelly J-C, Swapna LS, Offmann B, Cadet F, Bornot A, Tyagi M, Valadié H, et al. A short survey on protein blocks. Biophys. Rev. 2010;2:137–145. PubMed PMC
Tyagi M, Sharma P, Swamy CS, Cadet F, Srinivasan N, de Brevern AG, Offmann B. Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet. Nucleic Acids Res. 2006;34:W119–W123. PubMed PMC
Cech P, Kukal J, Cerny J, Schneider B, Svozil D. Automatic workflow for the classification of local DNA conformations. BMC Bioinform. 2013;14:205. PubMed PMC
de Brevern AG. New assessment of a structural alphabet. In Silico Biol. 2005;5:283–289. PubMed PMC
de Brevern AG, Valadie H, Hazout S, Etchebest C. Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci. 2002;11:2871–2886. PubMed PMC
Shakked Z, Rabinovich D, Kennard O, Cruse WBT, Salisbury SA, Viswamitra MA. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C) J. Mol. Biol. 1983;166:183–201. PubMed
Lu X-J, Shakked Z, Olson WK. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. PubMed
Steffen NR, Murphy SD, Lathrop RH, Opel ML, Tolleri L, Hatfield GW. The role of DNA deformation energy at individual base steps for the identification of DNA-protein binding sites. Genome Inform. 2002;13:153–162. PubMed
Taylor R, Kennard O. Molecular Structures of Nucleosides and Nucleotides. 2. orthogonal coordinates for standard nucleic acid base residues. J. Am. Chem. Soc. 1982;104:3209–3212.
Gelbin A, Schneider B, Clowney L, Hsieh S-H, Olson WK, Berman HM. Geometric parameters in nucleic acids: sugar and phosphate constituents. J. Am. Chem. Soc. 1996;118:519–528.
Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, et al. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) RNA. 2008;14:465–481. PubMed PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Malecka KA, Ho WC, Marmorstein R. Crystal structure of a p53 core tetramer bound to DNA. Oncogene. 2009;28:325–333. PubMed PMC
Ghosh G, van Duyne G, Ghosh S, Sigler PB. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature. 1995;373:303–310. PubMed
Mo Y, Vaessen B, Johnston K, Marmorstein R. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol. Cell. 1998;2:201–212. PubMed
Parkinson G, Gunasekera A, Vojtechovsky J, Zhang X, Kunkel TA, Berman H, Ebright RH. Aromatic hydrogen bond in sequence-specific protein DNA recognition. Nat. Struct. Biol. 1996;3:837–841. PubMed
Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO. Beyond the “recognition code”: structures of two Cys2His2 zinc finger/TATA box complexes. Structure. 2001;9:717–723. PubMed
Segal DJ, Crotty JW, Bhakta MS, Barbas CF, III, Horton NC. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA.J. Mol. Biol. 2006;363:405–421. PubMed
Jacobson EM, Li P, Leon-del-Rio A, Rosenfeld MG, Aggarwal AK. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev. 1997;11:198–212. PubMed
Garvie CW, Phillips SE. Direct and indirect readout in mutant Met repressor-operator complexes. Structure. 2000;8:905–914. PubMed
Xu QS, Kucera RB, Roberts RJ, Guo HC. An asymmetric complex of restriction endonuclease MspI on its palindromic DNA recognition site. Structure. 2004;12:1741–1747. PubMed
Takeuchi R, Certo M, Caprara MG, Scharenberg AM, Stoddard BL. Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation. Nucleic Acids Res. 2009;37:877–890. PubMed PMC
Horton JR, Zhang X, Maunus R, Yang Z, Wilson GG, Roberts RJ, Cheng X. DNA nicking by HinP1I endonuclease: bending, base flipping and minor groove expansion. Nucleic Acids Res. 2006;34:939–948. PubMed PMC
Watanabe N, Takasaki Y, Sato C, Ando S, Tanaka I. Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations. Acta Crystallogr. D Biol. Crystallogr. 2009;65:1326–1333. PubMed
Sonavane S, Chakrabarti P. Cavities in protein-DNA and protein-RNA interfaces. Nucleic Acids Res. 2009;37:4613–4620. PubMed PMC
Anderson CF, Record MT., Jr Polyelectrolyte theories and their applications to DNA. Annu. Rev. Phys. Chem. 1982;33:191–222.
Rau DC, Parsegian VA. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Biophys. J. 1992;61:246–259. PubMed PMC
Chalikian TV, Sarvazyan AP, Plum GE, Breslauer KJ. The influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 oC. Biochemistry. 1994;33:2394–2401. PubMed
Schneider B, Berman HM. Hydration of the DNA bases is local. Biophys. J. 1995;69:2661–2669. PubMed PMC
Schneider B, Patel K, Berman HM. Hydration of the phosphate group in double helical DNA. Biophys. J. 1998;75:2422–2434. PubMed PMC
Schneider B, Kabelac M. Stereochemistry of binding of metal cations and water to a phosphate group. J. Am. Chem. Soc. 1998;120:161–165.
Woda J, Schneider B, Patel K, Mistry K, Berman HM. An analysis of the relationship between hydration and protein-DNA interactions. Biophys. J. 1998;75:2170–2177. PubMed PMC
Anderson CF, Record MT., Jr Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annu. Rev. Biophys. Chem. 1990;19:423–465. PubMed
Leikin S, Parsegian VA, Rau DC. Hydration forces. Annu. Rev. Phys. Chem. 1993;44:369–395. PubMed
Chalikian TV, Breslauer KJ. Thermodynamic analysis of biomolecules: a volumetric approach. Curr. Opin. Struct. Biol. 1998;8:657–664. PubMed
Nadassy K, Tomas-Oliveira I, Alberts I, Janin J, Wodak SJ. Standard atomic volumes in double-stranded DNA and packing in protein–DNA interfaces. Nucleic Acids Res. 2001;29:3362–3376. PubMed PMC
Reddy CK, Das A, Jayaram B. Do water molecules mediate protein-DNA recognition? J. Mol. Biol. 2001;314:619–632. PubMed
Otwinowski Z, Schevitz RW, Zhang R-G, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988;335:321–329. PubMed
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002;319:1097–1113. PubMed
Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993;12:1781–1795. PubMed PMC
Horton NC, Perona JJ. Role of protein-induced bending in the specificity of DNA-recognition: Crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT) J. Mol. Biol. 1998;277:779–787. PubMed
Spolar RS, Record MT., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994;263:777–784. PubMed
Dickerson RE, Chiu TK. Helix bending as a factor in protein/DNA recognition. Biopolymers. 1997;44:361–403. PubMed
Kono H, Sarai A. Structure-based prediction of DNA target sites by regulatory proteins. Proteins. 1999;35:114–131. PubMed
Tolstorukov MY, Jernigan RL, Zhurkin VB. Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J. Mol. Biol. 2004;337:65–76. PubMed
Locasale JW, Napoli AA, Chen S, Berman HM, Lawson CL. Signatures of protein-DNA recognition in free DNA binding sites. J. Mol. Biol. 2009;386:1054–1065. PubMed PMC
Saenger W, Hunter WN, Kennard O. DNA conformation is determined by economics in the hydration of phosphate groups. Nature. 1986;324:385–388. PubMed
Tolstorukov MY, Ivanov VI, Malenkov GG, Jernigan RL, Zhurkin VB. Sequence-dependent B<–>A transition in DNA evaluated with dimeric and trimeric scales. Biophys. J. 2001;81:3409–3421. PubMed PMC
Shakked Z, Guerstein-Guzikevich G, Eisenstein M, Frolow F, Rabinovich D. The conformation of the DNA double helix in the crystal Is dependent on its environment. Nature. 1989;342:456–460. PubMed
Shakked Z. The influence of the environment on DNA structures determined by X-ray crystallography. Curr. Opin. Struct. Biol. 1991;1:446–451.
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 2010;67:43–62. PubMed PMC
Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks
Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org
Local dynamics of proteins and DNA evaluated from crystallographic B factors