Bioinformatic analysis of the protein/DNA interface

. 2014 Mar ; 42 (5) : 3381-94. [epub] 20131211

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24335080

To investigate the principles driving recognition between proteins and DNA, we analyzed more than thousand crystal structures of protein/DNA complexes. We classified protein and DNA conformations by structural alphabets, protein blocks [de Brevern, Etchebest and Hazout (2000) (Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet., 41:271-287)] and dinucleotide conformers [Svozil, Kalina, Omelka and Schneider (2008) (DNA conformations and their sequence preferences. Nucleic Acids Res., 36:3690-3706)], respectively. Assembling the mutually interacting protein blocks and dinucleotide conformers into 'interaction matrices' revealed their correlations and conformer preferences at the interface relative to their occurrence outside the interface. The analyzed data demonstrated important differences between complexes of various types of proteins such as transcription factors and nucleases, distinct interaction patterns for the DNA minor groove relative to the major groove and phosphate and importance of water-mediated contacts. Water molecules mediate proportionally the largest number of contacts in the minor groove and form the largest proportion of contacts in complexes of transcription factors. The generally known induction of A-DNA forms by complexation was more accurately attributed to A-like and intermediate A/B conformers rare in naked DNA molecules.

Zobrazit více v PubMed

Matthews BW. No code for recognition. Nature. 1988;335:294–295. PubMed

Pabo CO, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J. Mol. Biol. 2000;301:597–624. PubMed

Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 2010;79:233–269. PubMed PMC

Sunami T, Kono H. Local conformational changes in the DNA interfaces of proteins. PLoS One. 2013;8:e56080. PubMed PMC

Seeman NC, Rosenberg JM, Rich A. Sequence specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA. 1976;73:804–808. PubMed PMC

Dickerson R. In: Oxford Handbook of Nucleic Acid Structure. Neidle S, editor. Oxford: Oxford University Press; 1999. pp. 145–198.

Stormo GD, Zhao Y. Determining the specificity of protein-DNA interactions. Nat. Rev. Genet. 2010;11:751–760. PubMed

Sarai A, Takeda Y. Lambda repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically. Proc. Natl Acad. Sci. USA. 1989;86:6513–6517. PubMed PMC

Sarai A, Kono H. Protein-DNA recognition patterns and predictions. Annu. Rev. Biophys. Biomol. Struct. 2005;34:379–398. PubMed

Ahmad S, Keskin O, Sarai A, Nussinov R. Protein-DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Res. 2008;36:5922–5932. PubMed PMC

Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 1992;61:1053–1095. PubMed

Luscombe NM, Austin SE, Berman HM, Thornton JM. An overview of the structures of protein-DNA complexes. Genome Biol. 2000;1:1–37. PubMed PMC

Suzuki M, Gerstein M, Yagi N. Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res. 1994;22:3397–3405. PubMed PMC

Choo Y, Klug A. Physical basis of a protein-DNA recognition code. Curr. Opin. Struct. Biol. 1997;7:117–125. PubMed

Mandel-Gutfreund Y, Margalit H. Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. Nucleic Acids Res. 1998;26:2306–2312. PubMed PMC

Suzuki M, Gerstein M. Binding geometry of alpha-helices that recognize DNA. Proteins. 1995;23:525–535. PubMed

McLaughlin WA, Berman HM. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. J. Mol. Biol. 2003;330:43–55. PubMed

Jones S, van Heyningen P, Berman HM, Thornton JM. Protein-DNA interactions: a structural analysis. J. Mol. Biol. 1999;287:877–896. PubMed

Luscombe NM, Thornton JM. Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J. Mol. Biol. 2002;320:991–1009. PubMed

Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R. Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins. 2005;61:258–271. PubMed

Nadassy K, Wodak SJ, Janin J. Structural features of protein-nucleic acid recognition sites. Biochemistry. 1999;38:1999–2017. PubMed

Jones S, Shanahan HP, Berman HM, Thornton JM. Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Res. 2003;31:7189–7198. PubMed PMC

Tsuchiya Y, Kinoshita K, Nakamura H. Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces. Proteins. 2004;55:885–894. PubMed

Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. The role of DNA shape in protein-DNA recognition. Nature. 2009;461:1248–1253. PubMed PMC

Mandel-Gutfreund Y, Schueler O, Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles. J. Mol. Biol. 1995;253:370–382. PubMed

Luscombe NM, Laskowski RA, Thornton JM. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 2001;29:2860–2874. PubMed PMC

Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB. A role for CH•••O interactions in protein-DNA recognition. J. Mol. Biol. 1998;277:1129–1140. PubMed

Biot C, Wintjens R, Rooman M. Stair motifs at protein-DNA interfaces: nonadditivity of H-bond, stacking, and cation-pi interactions. J. Am. Chem. Soc. 2004;126:6220–6221. PubMed

Westhof E. Water: an integral part of nucleic acid structure. Annu. Rev. Biophys. Chem. 1988;17:125–144. PubMed

Schwabe JW. The role of water in protein-DNA interactions. Curr. Opin. Struct. Biol. 1997;7:126–134. PubMed

Berman HM, Schneider B. In: Oxford Handbook of Nucleic Acid Structure. Neidle S, editor. Oxford: Oxford University Press; 1999. pp. 295–312.

Jayaram B, Jain T. The role of water in protein-DNA recognition. Annu. Rev. Biophys. Biomol. Struct. 2004;33:343–361. PubMed

Ponomarenko JV, Bourne PE, Shindyalov IN. Building an automated classification of DNA-binding protein domains. Bioinformatics. 2002;18(Suppl. 2):S192–S201. PubMed

Sathyapriya R, Vijayabaskar MS, Vishveshwara S. Insights into protein-DNA interactions through structure network analysis. PLoS Comput. Biol. 2008;4:e1000170. PubMed PMC

Biswas S, Guharoy M, Chakrabarti P. Dissection, residue conservation, and structural classification of protein-DNA interfaces. Proteins. 2009;74:643–654. PubMed

Siggers TW, Silkov A, Honig B. Structural alignment of protein—DNA interfaces: insights into the determinants of binding specificity. J. Mol. Biol. 2005;345:1027–1045. PubMed

Prabakaran P, Siebers JG, Ahmad S, Gromiha MM, Singarayan MG, Sarai A. Classification of protein-DNA complexes based on structural descriptors. Structure. 2006;14:1355–1367. PubMed

Unger R, Harel D, Wherland S, Sussman JL. A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins. 1989;5:355–373. PubMed

Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 1998;281:565–577. PubMed

Kolodny R, Koehl P, Guibas L, Levitt M. Small libraries of protein fragments model native protein structures accurately. J. Mol. Biol. 2002;323:297–307. PubMed

Guyon F, Camproux AC, Hochez J, Tuffery P. SA-Search: a web tool for protein structure mining based on a Structural Alphabet. Nucleic Acids Res. 2004;32:W545–W548. PubMed PMC

Fourrier L, Benros C, de Brevern AG. Use of a structural alphabet for analysis of short loops connecting repetitive structures. BMC Bioinform. 2004;5:58. PubMed PMC

Benros C, de Brevern AG, Etchebest C, Hazout S. Assessing a novel approach for predicting local 3D protein structures from sequence. Prot. Struct. Funct. Bioinform. 2006;62:865–880. PubMed

de Brevern AG, Etchebest C, Hazout S. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet. 2000;41:271–287. PubMed

Offmann B, Tyagi M, de Brevern AG. Local protein structures. Curr. Bioinform. 2007;2:165–202.

Svozil D, Kalina J, Omelka M, Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008;36:3690–3706. PubMed PMC

Berman HM, Westbrook J, Feng Z, Iype L, Schneider B, Zardecki C. The Nucleic Acid Database. Acta Crystallogr. D Biol. Crystallogr. 2002;58:899–907. PubMed

Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002;58:889–898. PubMed

Davis IW, Murray LW, Richardson JS, Richardson DC. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 2004;32:W615–W619. PubMed PMC

Chen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. PubMed PMC

Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL. The Pfam protein families database. Nucleic Acids Res. 2002;30:276–280. PubMed PMC

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38, 27–38. PubMed

Joseph AP, Agarwal G, Mahajan S, Gelly J-C, Swapna LS, Offmann B, Cadet F, Bornot A, Tyagi M, Valadié H, et al. A short survey on protein blocks. Biophys. Rev. 2010;2:137–145. PubMed PMC

Tyagi M, Sharma P, Swamy CS, Cadet F, Srinivasan N, de Brevern AG, Offmann B. Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet. Nucleic Acids Res. 2006;34:W119–W123. PubMed PMC

Cech P, Kukal J, Cerny J, Schneider B, Svozil D. Automatic workflow for the classification of local DNA conformations. BMC Bioinform. 2013;14:205. PubMed PMC

de Brevern AG. New assessment of a structural alphabet. In Silico Biol. 2005;5:283–289. PubMed PMC

de Brevern AG, Valadie H, Hazout S, Etchebest C. Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci. 2002;11:2871–2886. PubMed PMC

Shakked Z, Rabinovich D, Kennard O, Cruse WBT, Salisbury SA, Viswamitra MA. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C) J. Mol. Biol. 1983;166:183–201. PubMed

Lu X-J, Shakked Z, Olson WK. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. PubMed

Steffen NR, Murphy SD, Lathrop RH, Opel ML, Tolleri L, Hatfield GW. The role of DNA deformation energy at individual base steps for the identification of DNA-protein binding sites. Genome Inform. 2002;13:153–162. PubMed

Taylor R, Kennard O. Molecular Structures of Nucleosides and Nucleotides. 2. orthogonal coordinates for standard nucleic acid base residues. J. Am. Chem. Soc. 1982;104:3209–3212.

Gelbin A, Schneider B, Clowney L, Hsieh S-H, Olson WK, Berman HM. Geometric parameters in nucleic acids: sugar and phosphate constituents. J. Am. Chem. Soc. 1996;118:519–528.

Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, et al. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) RNA. 2008;14:465–481. PubMed PMC

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed

Malecka KA, Ho WC, Marmorstein R. Crystal structure of a p53 core tetramer bound to DNA. Oncogene. 2009;28:325–333. PubMed PMC

Ghosh G, van Duyne G, Ghosh S, Sigler PB. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature. 1995;373:303–310. PubMed

Mo Y, Vaessen B, Johnston K, Marmorstein R. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol. Cell. 1998;2:201–212. PubMed

Parkinson G, Gunasekera A, Vojtechovsky J, Zhang X, Kunkel TA, Berman H, Ebright RH. Aromatic hydrogen bond in sequence-specific protein DNA recognition. Nat. Struct. Biol. 1996;3:837–841. PubMed

Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO. Beyond the “recognition code”: structures of two Cys2His2 zinc finger/TATA box complexes. Structure. 2001;9:717–723. PubMed

Segal DJ, Crotty JW, Bhakta MS, Barbas CF, III, Horton NC. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA.J. Mol. Biol. 2006;363:405–421. PubMed

Jacobson EM, Li P, Leon-del-Rio A, Rosenfeld MG, Aggarwal AK. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev. 1997;11:198–212. PubMed

Garvie CW, Phillips SE. Direct and indirect readout in mutant Met repressor-operator complexes. Structure. 2000;8:905–914. PubMed

Xu QS, Kucera RB, Roberts RJ, Guo HC. An asymmetric complex of restriction endonuclease MspI on its palindromic DNA recognition site. Structure. 2004;12:1741–1747. PubMed

Takeuchi R, Certo M, Caprara MG, Scharenberg AM, Stoddard BL. Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation. Nucleic Acids Res. 2009;37:877–890. PubMed PMC

Horton JR, Zhang X, Maunus R, Yang Z, Wilson GG, Roberts RJ, Cheng X. DNA nicking by HinP1I endonuclease: bending, base flipping and minor groove expansion. Nucleic Acids Res. 2006;34:939–948. PubMed PMC

Watanabe N, Takasaki Y, Sato C, Ando S, Tanaka I. Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations. Acta Crystallogr. D Biol. Crystallogr. 2009;65:1326–1333. PubMed

Sonavane S, Chakrabarti P. Cavities in protein-DNA and protein-RNA interfaces. Nucleic Acids Res. 2009;37:4613–4620. PubMed PMC

Anderson CF, Record MT., Jr Polyelectrolyte theories and their applications to DNA. Annu. Rev. Phys. Chem. 1982;33:191–222.

Rau DC, Parsegian VA. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Biophys. J. 1992;61:246–259. PubMed PMC

Chalikian TV, Sarvazyan AP, Plum GE, Breslauer KJ. The influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 oC. Biochemistry. 1994;33:2394–2401. PubMed

Schneider B, Berman HM. Hydration of the DNA bases is local. Biophys. J. 1995;69:2661–2669. PubMed PMC

Schneider B, Patel K, Berman HM. Hydration of the phosphate group in double helical DNA. Biophys. J. 1998;75:2422–2434. PubMed PMC

Schneider B, Kabelac M. Stereochemistry of binding of metal cations and water to a phosphate group. J. Am. Chem. Soc. 1998;120:161–165.

Woda J, Schneider B, Patel K, Mistry K, Berman HM. An analysis of the relationship between hydration and protein-DNA interactions. Biophys. J. 1998;75:2170–2177. PubMed PMC

Anderson CF, Record MT., Jr Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annu. Rev. Biophys. Chem. 1990;19:423–465. PubMed

Leikin S, Parsegian VA, Rau DC. Hydration forces. Annu. Rev. Phys. Chem. 1993;44:369–395. PubMed

Chalikian TV, Breslauer KJ. Thermodynamic analysis of biomolecules: a volumetric approach. Curr. Opin. Struct. Biol. 1998;8:657–664. PubMed

Nadassy K, Tomas-Oliveira I, Alberts I, Janin J, Wodak SJ. Standard atomic volumes in double-stranded DNA and packing in protein–DNA interfaces. Nucleic Acids Res. 2001;29:3362–3376. PubMed PMC

Reddy CK, Das A, Jayaram B. Do water molecules mediate protein-DNA recognition? J. Mol. Biol. 2001;314:619–632. PubMed

Otwinowski Z, Schevitz RW, Zhang R-G, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988;335:321–329. PubMed

Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002;319:1097–1113. PubMed

Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993;12:1781–1795. PubMed PMC

Horton NC, Perona JJ. Role of protein-induced bending in the specificity of DNA-recognition: Crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT) J. Mol. Biol. 1998;277:779–787. PubMed

Spolar RS, Record MT., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994;263:777–784. PubMed

Dickerson RE, Chiu TK. Helix bending as a factor in protein/DNA recognition. Biopolymers. 1997;44:361–403. PubMed

Kono H, Sarai A. Structure-based prediction of DNA target sites by regulatory proteins. Proteins. 1999;35:114–131. PubMed

Tolstorukov MY, Jernigan RL, Zhurkin VB. Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J. Mol. Biol. 2004;337:65–76. PubMed

Locasale JW, Napoli AA, Chen S, Berman HM, Lawson CL. Signatures of protein-DNA recognition in free DNA binding sites. J. Mol. Biol. 2009;386:1054–1065. PubMed PMC

Saenger W, Hunter WN, Kennard O. DNA conformation is determined by economics in the hydration of phosphate groups. Nature. 1986;324:385–388. PubMed

Tolstorukov MY, Ivanov VI, Malenkov GG, Jernigan RL, Zhurkin VB. Sequence-dependent B<–>A transition in DNA evaluated with dimeric and trimeric scales. Biophys. J. 2001;81:3409–3421. PubMed PMC

Shakked Z, Guerstein-Guzikevich G, Eisenstein M, Frolow F, Rabinovich D. The conformation of the DNA double helix in the crystal Is dependent on its environment. Nature. 1989;342:456–460. PubMed

Shakked Z. The influence of the environment on DNA structures determined by X-ray crystallography. Curr. Opin. Struct. Biol. 1991;1:446–451.

Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 2010;67:43–62. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...