Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks

. 2022 Aug 01 ; 78 (Pt 8) : 1032-1045. [epub] 20220721

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35916227

Grantová podpora
LTAUSA18197 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018131 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 86652036 Akademie Věd České Republiky, Institute of biotechnology of the Czech Academy of Sciences

Water plays an important role in stabilizing the structure of DNA and mediating its interactions. Here, the hydration of DNA was analyzed in terms of dinucleotide fragments from an ensemble of 2727 nonredundant DNA chains containing 41 853 dinucleotides and 316 265 associated first-shell water molecules. The dinucleotides were classified into categories based on their 16 sequences and the previously determined structural classes known as nucleotide conformers (NtCs). The construction of hydrated dinucleotide building blocks allowed dinucleotide hydration to be calculated as the probability of water density distributions. Peaks in the water densities, known as hydration sites (HSs), uncovered the interplay between base and sugar-phosphate hydration in the context of sequence and structure. To demonstrate the predictive power of hydrated DNA building blocks, they were then used to predict hydration in an independent set of crystal and NMR structures. In ten tested crystal structures, the positions of predicted HSs and experimental waters were in good agreement (more than 40% were within 0.5 Å) and correctly reproduced the known features of DNA hydration, for example the `spine of hydration' in B-DNA. Therefore, it is proposed that hydrated building blocks can be used to predict DNA hydration in structures solved by NMR and cryo-EM, thus providing a guide to the interpretation of experimental data and computer models. The data for the hydrated building blocks and the predictions are available for browsing and visualization at the website https://watlas.datmos.org/watna/.

Zobrazit více v PubMed

Auffinger, P. & Hashem, Y. (2007a). Bioinformatics, 23, 1035–1037. PubMed

Auffinger, P. & Hashem, Y. (2007b). Curr. Opin. Struct. Biol. 17, 325–333. PubMed

Ball, P. (2008). Chem. Rev. 108, 74–108. PubMed

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D. & Zardecki, C. (2002). Acta Cryst. D58, 899–907. PubMed

Biedermannová, L. & Schneider, B. (2015). Acta Cryst. D71, 2192–2202. PubMed PMC

Biedermannová, L. & Schneider, B. (2016). Biochim. Biophys. Acta, 1860, 1821–1835. PubMed

Černý, J., Božíková, P., Malý, M., Tykač, M., Biedermannová, L. & Schneider, B. (2020). Acta Cryst. D76, 805–813. PubMed PMC

Černý, J., Božíková, P. & Schneider, B. (2016). Nucleic Acids Res. 44, W284–W287. PubMed PMC

Černý, J., Božíková, P., Svoboda, J. & Schneider, B. (2020). Nucleic Acids Res. 48, 6367–6381. PubMed PMC

Černý, J., Schneider, B. & Biedermannová, L. (2017). Phys. Chem. Chem. Phys. 19, 17094–17102. PubMed

Chalikian, T. V., Sarvazyan, A. P. & Breslauer, K. J. (1994). Biophys. Chem. 51, 89–109. PubMed

Chaplin, M. (2006). Nat. Rev. Mol. Cell Biol. 7, 861–866. PubMed

Conti Nibali, V., D’Angelo, G., Paciaroni, A., Tobias, D. J. & Tarek, M. (2014). J. Phys. Chem. Lett. 5, 1181–1186. PubMed

Dai, S., Li, J., Zhang, H., Chen, X., Guo, M., Chen, Z. & Chen, Y. (2020). J. Mol. Biol. 432, 6146–6156. PubMed

Drew, H. R. & Dickerson, R. E. (1981). J. Mol. Biol. 151, 535–556. PubMed

Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1981). Proc. Natl Acad. Sci. USA, 78, 2179–2183. PubMed PMC

Dunitz, J. D. (1994). Science, 264, 670. PubMed

Ebbinghaus, S., Kim, S. J., Heyden, M., Yu, X., Heugen, U., Gruebele, M., Leitner, D. M. & Havenith, M. (2007). Proc. Natl Acad. Sci. USA, 104, 20749–20752. PubMed PMC

Egli, M., Tereshko, V., Teplova, M., Minasov, G., Joachimiak, A., Sanishvili, R., Weeks, C. M., Miller, R., Maier, M. A., An, H., Cook, P. D. & Manoharan, M. (1998). Biopolymers, 48, 234–252. PubMed

Eisenstein, M. & Shakked, Z. (1995). J. Mol. Biol. 248, 662–678. PubMed

Feng, N., Feng, H., Wang, S., Punekar, A. S., Ladenstein, R., Wang, D. C., Zhang, Q., Ding, J. & Liu, W. (2021). iScience, 24, 102951. PubMed PMC

Franklin, R. E. & Gosling, R. G. (1953). Nature, 171, 740–741. PubMed

Fuller, W., Forsyth, T. & Mahendrasingam, A. (2004). Philos. Trans. R. Soc. London B, 359, 1237–1248. PubMed PMC

Gessner, R. V., Quigley, G. J. & Egli, M. (1994). J. Mol. Biol. 236, 1154–1168. PubMed

Gregory, M. T., Gao, Y., Cui, Q. & Yang, W. (2021). Proc. Natl Acad. Sci. USA, 118, e2103990118. PubMed

Harp, J. M., Coates, L., Sullivan, B. & Egli, M. (2021). Nucleic Acids Res. 49, 4782–4792. PubMed PMC

Harper, A., Brannigan, J. A., Buck, M., Hewitt, L., Lewis, R. J., Moore, M. H. & Schneider, B. (1998). Acta Cryst. D54, 1273–1284. PubMed

Heyden, M. (2014). J. Chem. Phys. 141, 22D509. PubMed

Hummer, G. (2010). Nat. Chem. 2, 906–907. PubMed PMC

Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 33–38. PubMed

Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.

Jayaram, B. & Jain, T. (2004). Annu. Rev. Biophys. Biomol. Struct. 33, 343–361. PubMed

Jhan, C. R., Satange, R., Wang, S. C., Zeng, J. Y., Horng, Y. C., Jin, P., Neidle, S. & Hou, M. H. (2021). Nucleic Acids Res. 49, 9526–9538. PubMed PMC

Kaminski, A. M., Pryor, J. M., Ramsden, D. A., Kunkel, T. A., Pedersen, L. C. & Bebenek, K. (2020). Nat. Commun. 11, 4784. PubMed PMC

Khesbak, H., Savchuk, O., Tsushima, S. & Fahmy, K. (2011). J. Am. Chem. Soc. 133, 5834–5842. PubMed

Kopka, M. L., Fratini, A. V., Drew, H. R. & Dickerson, R. E. (1983). J. Mol. Biol. 163, 129–146. PubMed

Laage, D., Elsaesser, T. & Hynes, J. T. (2017). Chem. Rev. 117, 10694–10725. PubMed PMC

Langan, P., Forsyth, V. T., Mahendrasingam, A., Pigram, W. J., Mason, S. A. & Fuller, W. (1992). J. Biomol. Struct. Dyn. 10, 489–503. PubMed

Langlet, J., Claverie, P., Pullman, B. & Piazzola, D. (1979). Int. J. Quantum Chem. 16, 409–437.

Leikin, S., Parsegian, V. A., Rau, D. C. & Rand, R. P. (1993). Annu. Rev. Phys. Chem. 44, 369–395. PubMed

Levy, Y. & Onuchic, J. N. (2006). Annu. Rev. Biophys. Biomol. Struct. 35, 389–415. PubMed

Li, K., Yatsunyk, L. & Neidle, S. (2021). Nucleic Acids Res. 49, 519–528. PubMed PMC

Liepinsh, E., Otting, G. & Wüthrich, K. (1992). Nucleic Acids Res. 20, 6549–6553. PubMed PMC

McDermott, M. L., Vanselous, H., Corcelli, S. A. & Petersen, P. B. (2017). ACS Cent. Sci. 3, 708–714. PubMed PMC

Nakasako, M. (2004). Philos. Trans. R. Soc. London B, 359, 1191–1206. PubMed PMC

Neidle, S. (2021). Pharmaceuticals, 15, 7. PubMed PMC

Nguyen, B., Neidle, S. & Wilson, W. D. (2009). Acc. Chem. Res. 42, 11–21. PubMed PMC

Persson, F., Söderhjelm, P. & Halle, B. (2018). J. Chem. Phys. 148, 215104. PubMed

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605–1612. PubMed

Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H. & Ferrin, T. E. (2021). Protein Sci. 30, 70–82. PubMed PMC

Privé, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L. & Dickerson, R. E. (1987). Science, 238, 498–504. PubMed

Pullman, B., Pullman, A., Berthod, H. & Gresh, N. (1975). Theor. Chim. Acta, 40, 93–111.

Raschke, T. M. (2006). Curr. Opin. Struct. Biol. 16, 152–159. PubMed

Richardson, J. S., Schneider, B., Murray, L. W., Kapral, G. J., Immormino, R. M., Headd, J. J., Richardson, D. C., Ham, D., Hershkovits, E., Williams, L. D., Keating, K. S., Pyle, A. M., Micallef, D., Westbrook, J., Berman, H. M. & RNA Ontology Consortium (2008). RNA, 14, 465–481. PubMed PMC

Saenger, W., Hunter, W. N. & Kennard, O. (1986). Nature, 324, 385–388. PubMed

Sardana, D., Yadav, K., Shweta, H., Clovis, N. S., Alam, P. & Sen, S. (2019). J. Phys. Chem. B, 123, 10202–10216. PubMed

Schneider, B. & Berman, H. M. (1995). Biophys. J. 69, 2661–2669. PubMed PMC

Schneider, B., Božíková, P., Nečasová, I., Čech, P., Svozil, D. & Černý, J. (2018). Acta Cryst. D74, 52–64. PubMed PMC

Schneider, B., Černý, J., Svozil, D., Čech, P., Gelly, J. C. & de Brevern, A. G. (2014). Nucleic Acids Res. 42, 3381–3394. PubMed PMC

Schneider, B., Gelly, J.-C., de Brevern, A. G. & Černý, J. (2014). Acta Cryst. D70, 2413–2419. PubMed PMC

Schneider, B., Patel, K. & Berman, H. M. (1998). Biophys. J. 75, 2422–2434. PubMed PMC

Sehnal, D., Bittrich, S., Deshpande, M., Svobodová, R., Berka, K., Bazgier, V., Velankar, S., Burley, S. K., Koča, J. & Rose, A. S. (2021). Nucleic Acids Res. 49, W431–W437. PubMed PMC

Shakked, Z., Guzikevich-Guerstein, G., Frolow, F., Rabinovich, D., Joachimiak, A. & Sigler, P. B. (1994). Nature, 368, 469–473. PubMed

Shieh, H. S., Berman, H. M., Dabrow, M. & Neidle, S. (1980). Nucleic Acids Res. 8, 85–97. PubMed PMC

Sorin, E. J., Rhee, Y. M. & Pande, V. S. (2005). Biophys. J. 88, 2516–2524. PubMed PMC

Stielow, B., Zhou, Y., Cao, Y., Simon, C., Pogoda, H.-M., Jiang, J., Ren, Y., Phanor, S. K., Rohner, I., Nist, A., Stiewe, T., Hammerschmidt, M., Shi, Y., Bulyk, M. L., Wang, Z. & Liefke, R. (2021). Sci. Adv. 7, eabf2229. PubMed PMC

Texter, J. (1979). Prog. Biophys. Mol. Biol. 33, 83–97. PubMed

Tunis, M. B. & Hearst, J. E. (1968a). Biopolymers, 6, 1325–1344. PubMed

Tunis, M. B. & Hearst, J. E. (1968b). Biopolymers, 6, 1345–1353. PubMed

Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. A. & Rich, A. (1979). Nature, 282, 680–686. PubMed

Wang, J. H. (1955). J. Am. Chem. Soc. 77, 258–260.

Wei, D., Wilson, W. D. & Neidle, S. (2013). J. Am. Chem. Soc. 135, 1369–1377. PubMed PMC

Westhof, E. (1988). Annu. Rev. Biophys. Biophys. Chem. 17, 125–144. PubMed

Westhof, E. (1993). Water and Biological Macromolecules. Boca Raton: CRC Press.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Acta Cryst. D67, 235–242. PubMed PMC

Yamamoto, N., Kofu, M., Nakajima, K., Nakagawa, H. & Shibayama, N. (2021). J. Phys. Chem. Lett. 12, 2172–2176. PubMed

Zsidó, B. Z. & Hetényi, C. (2021). Curr. Opin. Struct. Biol. 67, 1–8. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Conformation-based refinement of 18-mer DNA structures

. 2023 Jul 01 ; 79 (Pt 7) : 655-665. [epub] 20230620

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...