Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18197
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018131
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 86652036
Akademie Věd České Republiky, Institute of biotechnology of the Czech Academy of Sciences
PubMed
35916227
PubMed Central
PMC9344474
DOI
10.1107/s2059798322006234
PII: S2059798322006234
Knihovny.cz E-zdroje
- Klíčová slova
- DNA hydration, WatNA, dinucleotide fragments, knowledge-based prediction, water,
- MeSH
- DNA * chemie MeSH
- konformace nukleové kyseliny MeSH
- nukleotidy MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- nukleotidy MeSH
- voda * MeSH
Water plays an important role in stabilizing the structure of DNA and mediating its interactions. Here, the hydration of DNA was analyzed in terms of dinucleotide fragments from an ensemble of 2727 nonredundant DNA chains containing 41 853 dinucleotides and 316 265 associated first-shell water molecules. The dinucleotides were classified into categories based on their 16 sequences and the previously determined structural classes known as nucleotide conformers (NtCs). The construction of hydrated dinucleotide building blocks allowed dinucleotide hydration to be calculated as the probability of water density distributions. Peaks in the water densities, known as hydration sites (HSs), uncovered the interplay between base and sugar-phosphate hydration in the context of sequence and structure. To demonstrate the predictive power of hydrated DNA building blocks, they were then used to predict hydration in an independent set of crystal and NMR structures. In ten tested crystal structures, the positions of predicted HSs and experimental waters were in good agreement (more than 40% were within 0.5 Å) and correctly reproduced the known features of DNA hydration, for example the `spine of hydration' in B-DNA. Therefore, it is proposed that hydrated building blocks can be used to predict DNA hydration in structures solved by NMR and cryo-EM, thus providing a guide to the interpretation of experimental data and computer models. The data for the hydrated building blocks and the predictions are available for browsing and visualization at the website https://watlas.datmos.org/watna/.
Zobrazit více v PubMed
Auffinger, P. & Hashem, Y. (2007a). Bioinformatics, 23, 1035–1037. PubMed
Auffinger, P. & Hashem, Y. (2007b). Curr. Opin. Struct. Biol. 17, 325–333. PubMed
Ball, P. (2008). Chem. Rev. 108, 74–108. PubMed
Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D. & Zardecki, C. (2002). Acta Cryst. D58, 899–907. PubMed
Biedermannová, L. & Schneider, B. (2015). Acta Cryst. D71, 2192–2202. PubMed PMC
Biedermannová, L. & Schneider, B. (2016). Biochim. Biophys. Acta, 1860, 1821–1835. PubMed
Černý, J., Božíková, P., Malý, M., Tykač, M., Biedermannová, L. & Schneider, B. (2020). Acta Cryst. D76, 805–813. PubMed PMC
Černý, J., Božíková, P. & Schneider, B. (2016). Nucleic Acids Res. 44, W284–W287. PubMed PMC
Černý, J., Božíková, P., Svoboda, J. & Schneider, B. (2020). Nucleic Acids Res. 48, 6367–6381. PubMed PMC
Černý, J., Schneider, B. & Biedermannová, L. (2017). Phys. Chem. Chem. Phys. 19, 17094–17102. PubMed
Chalikian, T. V., Sarvazyan, A. P. & Breslauer, K. J. (1994). Biophys. Chem. 51, 89–109. PubMed
Chaplin, M. (2006). Nat. Rev. Mol. Cell Biol. 7, 861–866. PubMed
Conti Nibali, V., D’Angelo, G., Paciaroni, A., Tobias, D. J. & Tarek, M. (2014). J. Phys. Chem. Lett. 5, 1181–1186. PubMed
Dai, S., Li, J., Zhang, H., Chen, X., Guo, M., Chen, Z. & Chen, Y. (2020). J. Mol. Biol. 432, 6146–6156. PubMed
Drew, H. R. & Dickerson, R. E. (1981). J. Mol. Biol. 151, 535–556. PubMed
Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1981). Proc. Natl Acad. Sci. USA, 78, 2179–2183. PubMed PMC
Dunitz, J. D. (1994). Science, 264, 670. PubMed
Ebbinghaus, S., Kim, S. J., Heyden, M., Yu, X., Heugen, U., Gruebele, M., Leitner, D. M. & Havenith, M. (2007). Proc. Natl Acad. Sci. USA, 104, 20749–20752. PubMed PMC
Egli, M., Tereshko, V., Teplova, M., Minasov, G., Joachimiak, A., Sanishvili, R., Weeks, C. M., Miller, R., Maier, M. A., An, H., Cook, P. D. & Manoharan, M. (1998). Biopolymers, 48, 234–252. PubMed
Eisenstein, M. & Shakked, Z. (1995). J. Mol. Biol. 248, 662–678. PubMed
Feng, N., Feng, H., Wang, S., Punekar, A. S., Ladenstein, R., Wang, D. C., Zhang, Q., Ding, J. & Liu, W. (2021). iScience, 24, 102951. PubMed PMC
Franklin, R. E. & Gosling, R. G. (1953). Nature, 171, 740–741. PubMed
Fuller, W., Forsyth, T. & Mahendrasingam, A. (2004). Philos. Trans. R. Soc. London B, 359, 1237–1248. PubMed PMC
Gessner, R. V., Quigley, G. J. & Egli, M. (1994). J. Mol. Biol. 236, 1154–1168. PubMed
Gregory, M. T., Gao, Y., Cui, Q. & Yang, W. (2021). Proc. Natl Acad. Sci. USA, 118, e2103990118. PubMed
Harp, J. M., Coates, L., Sullivan, B. & Egli, M. (2021). Nucleic Acids Res. 49, 4782–4792. PubMed PMC
Harper, A., Brannigan, J. A., Buck, M., Hewitt, L., Lewis, R. J., Moore, M. H. & Schneider, B. (1998). Acta Cryst. D54, 1273–1284. PubMed
Heyden, M. (2014). J. Chem. Phys. 141, 22D509. PubMed
Hummer, G. (2010). Nat. Chem. 2, 906–907. PubMed PMC
Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 33–38. PubMed
Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.
Jayaram, B. & Jain, T. (2004). Annu. Rev. Biophys. Biomol. Struct. 33, 343–361. PubMed
Jhan, C. R., Satange, R., Wang, S. C., Zeng, J. Y., Horng, Y. C., Jin, P., Neidle, S. & Hou, M. H. (2021). Nucleic Acids Res. 49, 9526–9538. PubMed PMC
Kaminski, A. M., Pryor, J. M., Ramsden, D. A., Kunkel, T. A., Pedersen, L. C. & Bebenek, K. (2020). Nat. Commun. 11, 4784. PubMed PMC
Khesbak, H., Savchuk, O., Tsushima, S. & Fahmy, K. (2011). J. Am. Chem. Soc. 133, 5834–5842. PubMed
Kopka, M. L., Fratini, A. V., Drew, H. R. & Dickerson, R. E. (1983). J. Mol. Biol. 163, 129–146. PubMed
Laage, D., Elsaesser, T. & Hynes, J. T. (2017). Chem. Rev. 117, 10694–10725. PubMed PMC
Langan, P., Forsyth, V. T., Mahendrasingam, A., Pigram, W. J., Mason, S. A. & Fuller, W. (1992). J. Biomol. Struct. Dyn. 10, 489–503. PubMed
Langlet, J., Claverie, P., Pullman, B. & Piazzola, D. (1979). Int. J. Quantum Chem. 16, 409–437.
Leikin, S., Parsegian, V. A., Rau, D. C. & Rand, R. P. (1993). Annu. Rev. Phys. Chem. 44, 369–395. PubMed
Levy, Y. & Onuchic, J. N. (2006). Annu. Rev. Biophys. Biomol. Struct. 35, 389–415. PubMed
Li, K., Yatsunyk, L. & Neidle, S. (2021). Nucleic Acids Res. 49, 519–528. PubMed PMC
Liepinsh, E., Otting, G. & Wüthrich, K. (1992). Nucleic Acids Res. 20, 6549–6553. PubMed PMC
McDermott, M. L., Vanselous, H., Corcelli, S. A. & Petersen, P. B. (2017). ACS Cent. Sci. 3, 708–714. PubMed PMC
Nakasako, M. (2004). Philos. Trans. R. Soc. London B, 359, 1191–1206. PubMed PMC
Neidle, S. (2021). Pharmaceuticals, 15, 7. PubMed PMC
Nguyen, B., Neidle, S. & Wilson, W. D. (2009). Acc. Chem. Res. 42, 11–21. PubMed PMC
Persson, F., Söderhjelm, P. & Halle, B. (2018). J. Chem. Phys. 148, 215104. PubMed
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605–1612. PubMed
Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H. & Ferrin, T. E. (2021). Protein Sci. 30, 70–82. PubMed PMC
Privé, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L. & Dickerson, R. E. (1987). Science, 238, 498–504. PubMed
Pullman, B., Pullman, A., Berthod, H. & Gresh, N. (1975). Theor. Chim. Acta, 40, 93–111.
Raschke, T. M. (2006). Curr. Opin. Struct. Biol. 16, 152–159. PubMed
Richardson, J. S., Schneider, B., Murray, L. W., Kapral, G. J., Immormino, R. M., Headd, J. J., Richardson, D. C., Ham, D., Hershkovits, E., Williams, L. D., Keating, K. S., Pyle, A. M., Micallef, D., Westbrook, J., Berman, H. M. & RNA Ontology Consortium (2008). RNA, 14, 465–481. PubMed PMC
Saenger, W., Hunter, W. N. & Kennard, O. (1986). Nature, 324, 385–388. PubMed
Sardana, D., Yadav, K., Shweta, H., Clovis, N. S., Alam, P. & Sen, S. (2019). J. Phys. Chem. B, 123, 10202–10216. PubMed
Schneider, B. & Berman, H. M. (1995). Biophys. J. 69, 2661–2669. PubMed PMC
Schneider, B., Božíková, P., Nečasová, I., Čech, P., Svozil, D. & Černý, J. (2018). Acta Cryst. D74, 52–64. PubMed PMC
Schneider, B., Černý, J., Svozil, D., Čech, P., Gelly, J. C. & de Brevern, A. G. (2014). Nucleic Acids Res. 42, 3381–3394. PubMed PMC
Schneider, B., Gelly, J.-C., de Brevern, A. G. & Černý, J. (2014). Acta Cryst. D70, 2413–2419. PubMed PMC
Schneider, B., Patel, K. & Berman, H. M. (1998). Biophys. J. 75, 2422–2434. PubMed PMC
Sehnal, D., Bittrich, S., Deshpande, M., Svobodová, R., Berka, K., Bazgier, V., Velankar, S., Burley, S. K., Koča, J. & Rose, A. S. (2021). Nucleic Acids Res. 49, W431–W437. PubMed PMC
Shakked, Z., Guzikevich-Guerstein, G., Frolow, F., Rabinovich, D., Joachimiak, A. & Sigler, P. B. (1994). Nature, 368, 469–473. PubMed
Shieh, H. S., Berman, H. M., Dabrow, M. & Neidle, S. (1980). Nucleic Acids Res. 8, 85–97. PubMed PMC
Sorin, E. J., Rhee, Y. M. & Pande, V. S. (2005). Biophys. J. 88, 2516–2524. PubMed PMC
Stielow, B., Zhou, Y., Cao, Y., Simon, C., Pogoda, H.-M., Jiang, J., Ren, Y., Phanor, S. K., Rohner, I., Nist, A., Stiewe, T., Hammerschmidt, M., Shi, Y., Bulyk, M. L., Wang, Z. & Liefke, R. (2021). Sci. Adv. 7, eabf2229. PubMed PMC
Texter, J. (1979). Prog. Biophys. Mol. Biol. 33, 83–97. PubMed
Tunis, M. B. & Hearst, J. E. (1968a). Biopolymers, 6, 1325–1344. PubMed
Tunis, M. B. & Hearst, J. E. (1968b). Biopolymers, 6, 1345–1353. PubMed
Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. A. & Rich, A. (1979). Nature, 282, 680–686. PubMed
Wang, J. H. (1955). J. Am. Chem. Soc. 77, 258–260.
Wei, D., Wilson, W. D. & Neidle, S. (2013). J. Am. Chem. Soc. 135, 1369–1377. PubMed PMC
Westhof, E. (1988). Annu. Rev. Biophys. Biophys. Chem. 17, 125–144. PubMed
Westhof, E. (1993). Water and Biological Macromolecules. Boca Raton: CRC Press.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Acta Cryst. D67, 235–242. PubMed PMC
Yamamoto, N., Kofu, M., Nakajima, K., Nakagawa, H. & Shibayama, N. (2021). J. Phys. Chem. Lett. 12, 2172–2176. PubMed
Zsidó, B. Z. & Hetényi, C. (2021). Curr. Opin. Struct. Biol. 67, 1–8. PubMed
Conformation-based refinement of 18-mer DNA structures