Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26527137
PubMed Central
PMC4631476
DOI
10.1107/s1399004715015679
PII: S1399004715015679
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray crystallography, protein hydration, structural biology,
- MeSH
- aminokyseliny analýza MeSH
- databáze proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- proteiny chemie MeSH
- sekundární struktura proteinů MeSH
- voda analýza MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- proteiny MeSH
- voda MeSH
Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon-donor hydrogen bonds, OH-π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.
Zobrazit více v PubMed
Ahmed, M. H., Spyrakis, F., Cozzini, P., Tripathi, P. K., Mozzarelli, A., Scarsdale, J. N., Safo, M. & Kellogg, G. E. (2011). PLoS One, 6, e24712. PubMed PMC
Auffinger, P. & Hashem, Y. (2007). Bioinformatics, 23, 1035–1037. PubMed
Baldwin, R. L. (2014). Proc. Natl Acad. Sci. USA, 111, 13052–13056. PubMed PMC
Berman, H. M. et al. (2002). Acta Cryst. D58, 899–907. PubMed
Bottoms, C. A., White, T. A. & Tanner, J. J. (2006). Proteins, 64, 404–421. PubMed
Bueno, M., Temiz, N. A. & Camacho, C. J. (2010). Proteins, 78, 3226–3234. PubMed
Busch, S., Bruce, C. D., Redfield, C., Lorenz, C. D. & McLain, S. E. (2013). Angew. Chem. Int. Ed. 52, 13091–13095. PubMed PMC
Bye, J. W., Meliga, S., Ferachou, D., Cinque, G., Zeitler, J. A. & Falconer, R. J. (2014). J. Phys. Chem. A, 118, 83–88. PubMed
Chalikian, T. V. (2008). J. Phys. Chem. B, 112, 911–917. PubMed
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC
Chen, X., Weber, I. & Harrison, R. W. (2008). J. Phys. Chem. B, 112, 12073–12080. PubMed PMC
Chong, S.-H. & Ham, S. (2014). Angew. Chem. Int. Ed. 53, 3961–3964. PubMed
Combet, S. & Zanotti, J.-M. (2012). Phys. Chem. Chem. Phys. 14, 4927–4934. PubMed
Cui, G., Swails, J. M. & Manas, E. S. (2013). J. Chem. Theory Comput. 9, 5539–5549. PubMed
De Beer, S. B. A., Vermeulen, N. P. E. & Oostenbrick, C. (2010). Curr. Top. Med. Chem. 10, 55–66. PubMed
Dikanov, S., Holland, J. T., Endeward, B., Kolling, D. R. J., Samoilova, R. I., Prisner, T. F. & Crofts, A. R. (2007). J. Biol. Chem. 282, 25831–25841. PubMed PMC
Finney, J. L., Hallbrucker, A., Kohl, I., Soper, A. K. & Bowron, D. T. (2002). Phys. Rev. Lett. 88, 225503. PubMed
Flanagan, K., Walshaw, J., Price, S. L. & Goodfellow, J. M. (1995). Protein Eng. 8, 109–116. PubMed
Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P. W., Jansson, H., McMahon, B. H., Stroe, I. R., Swenson, J. & Young, R. D. (2009). Proc. Natl Acad. Sci. USA, 106, 5129–5134. PubMed PMC
Frishman, D. & Argos, P. (1995). Proteins, 23, 566–579. PubMed
Ge, W., Schneider, B. & Olson, W. K. (2005). Biophys. J. 88, 1166–1190. PubMed PMC
Gilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1–15.
Goodfellow, J. M., Thanki, N. & Thornton, J. M. (1993). In Water and Biological Macromolecules, edited by E. Westhof. London: CRC Press.
Halle, B. (2004). Philos. Trans. R. Soc. B Biol. Sci. 359, 1207–1224. PubMed PMC
Halle, B. & Persson, F. (2013). J. Chem. Theory Comput. 9, 2838–2848. PubMed
Head-Gordon, T. & Johnson, M. E. (2006). Proc. Natl Acad. Sci. USA, 103, 7973–7977. PubMed PMC
Hu, B. & Lill, M. (2014). J. Comput. Chem. 35, 1255–1260. PubMed PMC
Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 33–38. PubMed
Jiang, L., Kuhlman, B., Kortemme, T. & Baker, D. (2005). Proteins, 58, 893–904. PubMed
Joseph, A. P., Agarwal, G., Mahajan, S., Gelly, J. C., Swapna, L. S., Offmann, B., Cadet, F., Bornot, A., Tyagi, M., Valadié, H., Schneider, B., Etchebest, C., Srinivasan, N. & De Brevern, A. G. (2010). Biophys. Rev. 2, 137–147. PubMed PMC
Kastritis, P. L., Visscher, K. M., van Dijk, A. D. J. & Bonvin, A. M. J. J. (2013). Proteins, 81, 510–518. PubMed
Kysilka, J. & Vondrášek, J. (2013). J. Mol. Recognit. 26, 479–487. PubMed
Makarov, V., Pettitt, B. M. & Feig, M. (2002). Acc. Chem. Res. 35, 376–384. PubMed
Maruyama, Y. & Harano, Y. (2013). Chem. Phys. Lett. 581, 85–90.
Matsuoka, D. & Nakasako, M. (2009). J. Phys. Chem. B, 113, 11274–11292. PubMed
Matsuoka, D. & Nakasako, M. (2013). Chem. Phys. 419, 59–64.
Morris, A. S., Thanki, N. & Goodfellow, J. M. (1992). Protein Eng.. 5, 717–728. PubMed
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Niimura, N. & Bau, R. (2008). Acta Cryst. A64, 12–22. PubMed
Nucci, N. V., Pometun, M. S. & Wand, A. J. (2011). Nature Struct. Mol. Biol. 18, 245–249. PubMed PMC
Papoian, G., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z. & Wolynes, P. G. (2004). Proc. Natl Acad. Sci. USA, 101, 3352–3357. PubMed PMC
Parikh, H. I. & Kellogg, G. E. (2014). Proteins, 82, 916–932. PubMed
Park, S. & Saven, J. G. (2005). Proteins, 60, 450–463. PubMed
Petrella, R. J. & Karplus, M. (2004). Proteins, 54, 716–726. PubMed
Pitt, W. R., Murray-Rust, J. & Goodfellow, J. M. (1993). J. Comput. Chem. 14, 1007–1018.
Ramirez, U. D., Focia, P. J. & Freymann, D. M. (2008). Acta Cryst. D64, 1043–1053. PubMed PMC
Reichmann, D., Phillip, Y., Carmi, A. & Schreiber, G. (2008). Biochemistry, 47, 1051–1060. PubMed
Roe, S. M. & Teeter, M. M. (1993). J. Mol. Biol. 229, 419–427. PubMed
Roh, J. H., Curtis, J. E., Azzam, S., Novikov, V. N., Peral, I., Chowdhuri, Z., Gregory, R. B. & Sokolov, A. P. (2006). Biophys. J. 91, 2573–2588. PubMed PMC
Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. (1985). Science, 229, 834–838. PubMed
Schneider, B. & Berman, H. M. (1995). Biophys. J. 69, 2661–2669. PubMed PMC
Schneider, B., Cohen, D. M., Schleifer, L., Srinivasan, A. R., Olson, W. K. & Berman, H. M. (1993). Biophys. J. 65, 2291–2303. PubMed PMC
Schneider, B., Gelly, J.-C., de Brevern, A. G. & Černý, J. (2014). Acta Cryst. D70, 2413–2419. PubMed PMC
Schneider, B., Patel, K. & Berman, H. M. (1998). Biophys. J. 75, 2422–2434. PubMed PMC
Setny, P., Baron, R., Kekenes-Huskey, P. M., McCammon, J. A. & Dzubiella, J. (2013). Proc. Natl Acad. Sci. USA, 110, 1197–1202. PubMed PMC
Stollar, E. J., Gelpí, J. L., Velankar, S., Golovin, A., Orozco, M. & Luisi, B. F. (2004). Proteins, 57, 1–8. PubMed
Takano, K., Yamagata, Y. & Yutani, K. (2003). Protein Eng. 16, 5–9. PubMed
Takatani, T. & Sherrill, C. D. (2007). Phys. Chem. Chem. Phys. 9, 6106–6114. PubMed
Thanki, N., Thornton, J. M. & Goodfellow, J. M. (1988). J. Mol. Biol. 202, 637–657. PubMed
Titantah, J. T. & Karttunen, M. (2013). Sci. Rep. 3, 2991. PubMed PMC
Wallnoefer, H. G., Liedl, K. R. & Fox, T. (2011). J. Chem. Inf. Model. 51, 2860–2867. PubMed
Walshaw, J. & Goodfellow, J. M. (1993). J. Mol. Biol. 231, 392–414. PubMed
Williams, M., Goodfellow, J. M. & Thornton, J. M. (1994). Protein Sci. 3, 1224–1235. PubMed PMC
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed
Word, J. M., Lovell, S. C., LaBean, T. H., Taylor, H. C., Zalis, M. E., Presley, B. K., Richardson, J. S. & Richardson, D. C. (1999). J. Mol. Biol. 285, 1711–1733. PubMed
Yang, L., Dordick, J. S. & Garde, S. (2004). Biophys. J. 87, 812–821. PubMed PMC
Zhang, L., Wang, L., Kao, Y.-T., Qiu, W., Yang, Y., Okobiah, O. & Zhong, D. (2007). Proc. Natl Acad. Sci. USA, 104, 18461–18466. PubMed PMC
Zhang, L., Yang, Y., Kao, Y.-T., Wang, L. & Zhong, D. (2009). J. Am. Chem. Soc. 131, 10677–10691. PubMed
Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. (2008). J. Inorg. Biochem. 102, 1765–1776. PubMed PMC
Zheng, M., Li, Y., Xiong, B., Jiang, H. & Shen, J. (2013). J. Comput. Chem. 34, 583–592. PubMed
Zhong, D., Pal, S. K. & Zewail, A. H. (2011). Chem. Phys. Lett. 503, 1–11.
Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge
Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge
Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks