Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

. 2015 Nov ; 71 (Pt 11) : 2192-202. [epub] 20151027

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26527137

Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon-donor hydrogen bonds, OH-π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

Zobrazit více v PubMed

Ahmed, M. H., Spyrakis, F., Cozzini, P., Tripathi, P. K., Mozzarelli, A., Scarsdale, J. N., Safo, M. & Kellogg, G. E. (2011). PLoS One, 6, e24712. PubMed PMC

Auffinger, P. & Hashem, Y. (2007). Bioinformatics, 23, 1035–1037. PubMed

Baldwin, R. L. (2014). Proc. Natl Acad. Sci. USA, 111, 13052–13056. PubMed PMC

Berman, H. M. et al. (2002). Acta Cryst. D58, 899–907. PubMed

Bottoms, C. A., White, T. A. & Tanner, J. J. (2006). Proteins, 64, 404–421. PubMed

Bueno, M., Temiz, N. A. & Camacho, C. J. (2010). Proteins, 78, 3226–3234. PubMed

Busch, S., Bruce, C. D., Redfield, C., Lorenz, C. D. & McLain, S. E. (2013). Angew. Chem. Int. Ed. 52, 13091–13095. PubMed PMC

Bye, J. W., Meliga, S., Ferachou, D., Cinque, G., Zeitler, J. A. & Falconer, R. J. (2014). J. Phys. Chem. A, 118, 83–88. PubMed

Chalikian, T. V. (2008). J. Phys. Chem. B, 112, 911–917. PubMed

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC

Chen, X., Weber, I. & Harrison, R. W. (2008). J. Phys. Chem. B, 112, 12073–12080. PubMed PMC

Chong, S.-H. & Ham, S. (2014). Angew. Chem. Int. Ed. 53, 3961–3964. PubMed

Combet, S. & Zanotti, J.-M. (2012). Phys. Chem. Chem. Phys. 14, 4927–4934. PubMed

Cui, G., Swails, J. M. & Manas, E. S. (2013). J. Chem. Theory Comput. 9, 5539–5549. PubMed

De Beer, S. B. A., Vermeulen, N. P. E. & Oostenbrick, C. (2010). Curr. Top. Med. Chem. 10, 55–66. PubMed

Dikanov, S., Holland, J. T., Endeward, B., Kolling, D. R. J., Samoilova, R. I., Prisner, T. F. & Crofts, A. R. (2007). J. Biol. Chem. 282, 25831–25841. PubMed PMC

Finney, J. L., Hallbrucker, A., Kohl, I., Soper, A. K. & Bowron, D. T. (2002). Phys. Rev. Lett. 88, 225503. PubMed

Flanagan, K., Walshaw, J., Price, S. L. & Goodfellow, J. M. (1995). Protein Eng. 8, 109–116. PubMed

Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P. W., Jansson, H., McMahon, B. H., Stroe, I. R., Swenson, J. & Young, R. D. (2009). Proc. Natl Acad. Sci. USA, 106, 5129–5134. PubMed PMC

Frishman, D. & Argos, P. (1995). Proteins, 23, 566–579. PubMed

Ge, W., Schneider, B. & Olson, W. K. (2005). Biophys. J. 88, 1166–1190. PubMed PMC

Gilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1–15.

Goodfellow, J. M., Thanki, N. & Thornton, J. M. (1993). In Water and Biological Macromolecules, edited by E. Westhof. London: CRC Press.

Halle, B. (2004). Philos. Trans. R. Soc. B Biol. Sci. 359, 1207–1224. PubMed PMC

Halle, B. & Persson, F. (2013). J. Chem. Theory Comput. 9, 2838–2848. PubMed

Head-Gordon, T. & Johnson, M. E. (2006). Proc. Natl Acad. Sci. USA, 103, 7973–7977. PubMed PMC

Hu, B. & Lill, M. (2014). J. Comput. Chem. 35, 1255–1260. PubMed PMC

Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 33–38. PubMed

Jiang, L., Kuhlman, B., Kortemme, T. & Baker, D. (2005). Proteins, 58, 893–904. PubMed

Joseph, A. P., Agarwal, G., Mahajan, S., Gelly, J. C., Swapna, L. S., Offmann, B., Cadet, F., Bornot, A., Tyagi, M., Valadié, H., Schneider, B., Etchebest, C., Srinivasan, N. & De Brevern, A. G. (2010). Biophys. Rev. 2, 137–147. PubMed PMC

Kastritis, P. L., Visscher, K. M., van Dijk, A. D. J. & Bonvin, A. M. J. J. (2013). Proteins, 81, 510–518. PubMed

Kysilka, J. & Vondrášek, J. (2013). J. Mol. Recognit. 26, 479–487. PubMed

Makarov, V., Pettitt, B. M. & Feig, M. (2002). Acc. Chem. Res. 35, 376–384. PubMed

Maruyama, Y. & Harano, Y. (2013). Chem. Phys. Lett. 581, 85–90.

Matsuoka, D. & Nakasako, M. (2009). J. Phys. Chem. B, 113, 11274–11292. PubMed

Matsuoka, D. & Nakasako, M. (2013). Chem. Phys. 419, 59–64.

Morris, A. S., Thanki, N. & Goodfellow, J. M. (1992). Protein Eng.. 5, 717–728. PubMed

Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC

Niimura, N. & Bau, R. (2008). Acta Cryst. A64, 12–22. PubMed

Nucci, N. V., Pometun, M. S. & Wand, A. J. (2011). Nature Struct. Mol. Biol. 18, 245–249. PubMed PMC

Papoian, G., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z. & Wolynes, P. G. (2004). Proc. Natl Acad. Sci. USA, 101, 3352–3357. PubMed PMC

Parikh, H. I. & Kellogg, G. E. (2014). Proteins, 82, 916–932. PubMed

Park, S. & Saven, J. G. (2005). Proteins, 60, 450–463. PubMed

Petrella, R. J. & Karplus, M. (2004). Proteins, 54, 716–726. PubMed

Pitt, W. R., Murray-Rust, J. & Goodfellow, J. M. (1993). J. Comput. Chem. 14, 1007–1018.

Ramirez, U. D., Focia, P. J. & Freymann, D. M. (2008). Acta Cryst. D64, 1043–1053. PubMed PMC

Reichmann, D., Phillip, Y., Carmi, A. & Schreiber, G. (2008). Biochemistry, 47, 1051–1060. PubMed

Roe, S. M. & Teeter, M. M. (1993). J. Mol. Biol. 229, 419–427. PubMed

Roh, J. H., Curtis, J. E., Azzam, S., Novikov, V. N., Peral, I., Chowdhuri, Z., Gregory, R. B. & Sokolov, A. P. (2006). Biophys. J. 91, 2573–2588. PubMed PMC

Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. (1985). Science, 229, 834–838. PubMed

Schneider, B. & Berman, H. M. (1995). Biophys. J. 69, 2661–2669. PubMed PMC

Schneider, B., Cohen, D. M., Schleifer, L., Srinivasan, A. R., Olson, W. K. & Berman, H. M. (1993). Biophys. J. 65, 2291–2303. PubMed PMC

Schneider, B., Gelly, J.-C., de Brevern, A. G. & Černý, J. (2014). Acta Cryst. D70, 2413–2419. PubMed PMC

Schneider, B., Patel, K. & Berman, H. M. (1998). Biophys. J. 75, 2422–2434. PubMed PMC

Setny, P., Baron, R., Kekenes-Huskey, P. M., McCammon, J. A. & Dzubiella, J. (2013). Proc. Natl Acad. Sci. USA, 110, 1197–1202. PubMed PMC

Stollar, E. J., Gelpí, J. L., Velankar, S., Golovin, A., Orozco, M. & Luisi, B. F. (2004). Proteins, 57, 1–8. PubMed

Takano, K., Yamagata, Y. & Yutani, K. (2003). Protein Eng. 16, 5–9. PubMed

Takatani, T. & Sherrill, C. D. (2007). Phys. Chem. Chem. Phys. 9, 6106–6114. PubMed

Thanki, N., Thornton, J. M. & Goodfellow, J. M. (1988). J. Mol. Biol. 202, 637–657. PubMed

Titantah, J. T. & Karttunen, M. (2013). Sci. Rep. 3, 2991. PubMed PMC

Wallnoefer, H. G., Liedl, K. R. & Fox, T. (2011). J. Chem. Inf. Model. 51, 2860–2867. PubMed

Walshaw, J. & Goodfellow, J. M. (1993). J. Mol. Biol. 231, 392–414. PubMed

Williams, M., Goodfellow, J. M. & Thornton, J. M. (1994). Protein Sci. 3, 1224–1235. PubMed PMC

Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed

Word, J. M., Lovell, S. C., LaBean, T. H., Taylor, H. C., Zalis, M. E., Presley, B. K., Richardson, J. S. & Richardson, D. C. (1999). J. Mol. Biol. 285, 1711–1733. PubMed

Yang, L., Dordick, J. S. & Garde, S. (2004). Biophys. J. 87, 812–821. PubMed PMC

Zhang, L., Wang, L., Kao, Y.-T., Qiu, W., Yang, Y., Okobiah, O. & Zhong, D. (2007). Proc. Natl Acad. Sci. USA, 104, 18461–18466. PubMed PMC

Zhang, L., Yang, Y., Kao, Y.-T., Wang, L. & Zhong, D. (2009). J. Am. Chem. Soc. 131, 10677–10691. PubMed

Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. (2008). J. Inorg. Biochem. 102, 1765–1776. PubMed PMC

Zheng, M., Li, Y., Xiong, B., Jiang, H. & Shen, J. (2013). J. Comput. Chem. 34, 583–592. PubMed

Zhong, D., Pal, S. K. & Zewail, A. H. (2011). Chem. Phys. Lett. 503, 1–11.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...