Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge

. 2024 Jan 25 ; () : . [epub] 20240125

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38343795

Grantová podpora
MC_UP_A025_1012 Medical Research Council - United Kingdom
R24 GM141254 NIGMS NIH HHS - United States
R01 GM079429 NIGMS NIH HHS - United States
R01 GM071939 NIGMS NIH HHS - United States
P01 GM063210 NIGMS NIH HHS - United States
MR/V000403/1 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
R35 GM131883 NIGMS NIH HHS - United States
R01 GM146340 NIGMS NIH HHS - United States
R01 GM123089 NIGMS NIH HHS - United States
R01 GM073919 NIGMS NIH HHS - United States
R01 GM133840 NIGMS NIH HHS - United States

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

Biodesign Institute Arizona State University Tempe AZ USA

Center for Development of Therapeutics Broad Institute of MIT and Harvard Cambridge MA USA

Chemical Computing Group Montreal Quebec CA

Department of Biochemistry and Institute for Protein Design University of Washington Seattle WA USA

Department of Biochemistry and Molecular Biology The University of Texas Health Science Center at Houston Houston TX USA

Department of Biochemistry and Molecular Biology University of Chicago Chicago IL USA

Department of Biochemistry Duke University Durham NC USA

Department of Biochemistry University of Cambridge Cambridge UK

Department of Biological Sciences Purdue University West Lafayette IN USA

Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ USA

Department of Chemistry and Quantum Theory Project University of Florida Gainesville FL USA

Department of Chemistry Carleton University Ottawa ON Canada

Department of Computer Science Pacific Lutheran University Tacoma WA USA

Department of Computer Science Purdue University West Lafayette IN USA

Department of Computer Science Saint Louis University St Louis MO USA

Department of Electrical Engineering and Computer Science University of Missouri Columbia MO USA

Department of Haematology Cambridge Institute for Medical Research University of Cambridge Cambridge UK

Department of Quantitative and Computational Biology University of Southern California Los Angeles CA 90089 USA

Departments of Bioengineering and of Microbiology and Immunology Stanford University Stanford CA USA

Discovery Chemistry Genentech Inc South San Francisco USA

Division of Computing and Software Systems University of Washington Bothell WA USA

Division of Cryo EM and Bioimaging SSRL SLAC National Accelerator Laboratory Menlo Park CA USA

Electron Bio Imaging Centre Diamond Light Source Harwell Science and Innovation Campus Didcot UK

European Molecular Biology Laboratory Hamburg Unit Hamburg Germany

Genome Center University of California Davis CA USA

Institute for Quantitative Biomedicine Rutgers The State University of New Jersey Piscataway NJ USA

Institute of Biochemistry and Molecular Biology ZBMZ Faculty of Medicine and CIBSS Centre for Integrative Biological Signalling Studies University of Freiburg 79104 Freiburg Germany

Institute of Biological Information Processing Forschungszentrum Jülich Jülich Germany

Institute of Biotechnology Czech Academy of Sciences Vestec

Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory Berkeley CA USA

MRC Laboratory of Molecular Biology Cambridge UK

Nature's Toolbox Rio Rancho NM USA

Physics Department Heinrich Heine University Düsseldorf Düsseldorf Germany

Rutgers Cancer Institute of New Jersey Rutgers The State University of New Jersey New Brunswick NJ USA

San Diego Supercomputer Center University of California San Diego La Jolla CA USA

School of Advanced Sciences and Languages VIT Bhopal University Bhopal India

Scientific Computing Department UKRI Science and Technology Facilities Council Research Complex at Harwell Didcot UK

Structural Biology Center 10 ray Science Division Argonne National Laboratory Argonne IL USA

Structural Biology Genentech Inc South San Francisco USA

Theoretical and Computational Biophysics Department Max Planck Institute for Multidisciplinary Sciences Göttingen Germany

Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine Houston TX USA

York Structural Biology Laboratory Department of Chemistry University of York York UK

Aktualizováno

PubMed

Zobrazit více v PubMed

Adams P. D. et al. Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop. Structure 24, 502–508 (2016). PubMed PMC

Gore S. et al. Validation of Structures in the Protein Data Bank. Structure 25, 1916–1927 (2017). PubMed PMC

Smart O. S. et al. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr D Struct Biol 74, 228–236 (2018). PubMed PMC

Feng Z. et al. Enhanced validation of small-molecule ligands and carbohydrates in the Protein Data Bank. Structure 29, 393–400.e1 (2021). PubMed PMC

Lawson C. L., Berman H. M. & Chiu W. Evolving data standards for cryo-EM structures. Struct Dyn 7, 014701 (2020). PubMed PMC

Lawson C. L. & Chiu W. Comparing cryo-EM structures. J. Struct. Biol. 204, 523–526 (2018). PubMed PMC

Barad B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015). PubMed PMC

Lawson C. L. et al. Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nat. Methods 18, 156–164 (2021). PubMed PMC

Williams C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018). PubMed PMC

Pintilie G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020). PubMed PMC

Wang Z., Patwardhan A. & Kleywegt G. J. Validation analysis of EMDB entries. Acta Crystallogr D Struct Biol 78, 542–552 (2022). PubMed PMC

Bartesaghi A. et al. Atomic Resolution Cryo-EM Structure of β-Galactosidase. Structure 26, 848–856.e3 (2018). PubMed PMC

Yin W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499–1504 (2020). PubMed PMC

Kokic G. et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 12, 279 (2021). PubMed PMC

Kern D. M. et al. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat. Struct. Mol. Biol. 28, 573–582 (2021). PubMed PMC

Kryshtafovych A., Adams P. D., Lawson C. L. & Chiu W. Evaluation system and web infrastructure for the second cryo-EM model challenge. J. Struct. Biol. 204, 96–108 (2018). PubMed PMC

Rosenthal P. B. & Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryo-microscopy. J. Mol. Biol. 333, 721–745 (2003). PubMed

Lagerstedt I. et al. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB. J. Struct. Biol. 184, 173–181 (2013). PubMed PMC

Joseph A. P., Lagerstedt I., Patwardhan A., Topf M. & Winn M. Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. J. Struct. Biol. 199, 12–26 (2017). PubMed PMC

Afonine P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D Struct Biol 74, 814–840 (2018). PubMed PMC

Chen V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC

Liebschner D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861–877 (2019). PubMed PMC

Kryshtafovych A. et al. Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10. Proteins 82 Suppl 2, 26–42 (2014). PubMed PMC

Bruno I. J. et al. Retrieval of crystallographically-derived molecular geometry information. J. Chem. Inf. Comput. Sci. 44, 2133–2144 (2004). PubMed

Shao C. et al. Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Structure 30, 252–262.e4 (2022). PubMed PMC

Casañal A., Lohkamp B. & Emsley P. Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci. 29, 1069–1078 (2020). PubMed PMC

Nicholls R. A. et al. Modelling covalent linkages in CCP4. Acta Crystallogr D Struct Biol 77, 712–726 (2021). PubMed PMC

Černý J., Božíková P., Svoboda J. & Schneider B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 48, 6367–6381 (2020). PubMed PMC

Černý J. et al. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr D Struct Biol 76, 805–813 (2020). PubMed PMC

Biedermannová L. & Schneider B. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures. Acta Crystallogr. D Biol. Crystallogr. 71, 2192–2202 (2015). PubMed PMC

Černý J., Schneider B. & Biedermannová L. WatAA: Atlas of Protein Hydration. Exploring synergies between data mining and ab initio calculations. Phys. Chem. Chem. Phys. 19, 17094–17102 (2017). PubMed

Prisant M. G., Williams C. J., Chen V. B., Richardson J. S. & Richardson D. C. New tools in MolProbity validation: CaBLAM for Cryo-EM backbone, UnDowser to rethink ‘waters,’ and NGL Viewer to recapture online 3D graphics. Protein Sci. 29, 315–329 (2020). PubMed PMC

Jiang S., Feher M., Williams C., Cole B. & Shaw D. E. AutoPH4: An Automated Method for Generating Pharmacophore Models from Protein Binding Pockets. J. Chem. Inf. Model. 60, 4326–4338 (2020). PubMed

Tyagi R., Singh A., Chaudhary K. K. & Yadav M. K. Chapter 17 - Pharmacophore modeling and its applications. in Bioinformatics (eds. Singh D. B. & Pathak R. K.) 269–289 (Academic Press, 2022).

Sellers B. D., James N. C. & Gobbi A. A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments. J. Chem. Inf. Model. 57, 1265–1275 (2017). PubMed

Lee M.-L. et al. chemalot and chemalot_knime: Command line programs as workflow tools for drug discovery. J. Cheminform. 9, 38 (2017). PubMed PMC

Smith J. S., Isayev O. & Roitberg A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017). PubMed PMC

Croll T. I., Williams C. J., Chen V. B., Richardson D. C. & Richardson J. S. Improving SARS-CoV-2 structures: Peer review by early coordinate release. Biophys. J. 120, 1085–1096 (2021). PubMed PMC

Modi V., Xu Q., Adhikari S. & Dunbrack R. L. Jr. Assessment of template-based modeling of protein structure in CASP11. Proteins 84 Suppl 1, 200–220 (2016). PubMed PMC

Zhang K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, 5511 (2019). PubMed PMC

Su Z. et al. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature 596, 603–607 (2021). PubMed PMC

Lawson C. L., Berman H. M., Chen L., Vallat B. & Zirbel C. L. The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res. (2023) doi:10.1093/nar/gkad957. PubMed DOI PMC

Sun S. Y. et al. Cryo-ET of parasites gives subnanometer insight into tubulin-based structures. Proc. Natl. Acad. Sci. U. S. A. 119, (2022). PubMed PMC

Liu H.-F. et al. nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single-particle cryo-electron tomography. Nat. Methods (2023) doi:10.1038/s41592-023-02045-0. PubMed DOI PMC

Chmielewski D. et al. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. Res Sq (2023) doi:10.21203/rs.3.rs-2553619/v1. DOI

Yang H. et al. Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 60, 1833–1839 (2004). PubMed

wwPDB Consortium. EMDB-the Electron Microscopy Data Bank. Nucleic Acids Res. (2023) doi:10.1093/nar/gkad1019. PubMed DOI PMC

Westbrook J. D. et al. The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics 31, 1274–1278 (2015). PubMed PMC

Gražulis S. et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40, D420–7 (2012). PubMed PMC

Moriarty N. W., Grosse-Kunstleve R. W. & Adams P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009). PubMed PMC

Nicholls R. A. et al. The missing link: covalent linkages in structural models. Acta Crystallogr D Struct Biol 77, 727–745 (2021). PubMed PMC

Chaudhury S., Lyskov S. & Gray J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010). PubMed PMC

Wang J., Wolf R. M., Caldwell J. W., Kollman P. A. & Case D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). PubMed

O’Boyle N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3, 33 (2011). PubMed PMC

Vanommeslaeghe K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010). PubMed PMC

Vagin A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004). PubMed

Chojnowski G., Sobolev E., Heuser P. & Lamzin V. S. The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP. Acta Crystallogr D Struct Biol 77, 142–150 (2021). PubMed PMC

Terashi G. & Kihara D. De novo main-chain modeling for EM maps using MAINMAST. Nat. Commun. 9, 1618 (2018). PubMed PMC

Terashi G., Kagaya Y. & Kihara D. MAINMASTseg: Automated Map Segmentation Method for Cryo-EM Density Maps with Symmetry. J. Chem. Inf. Model. 60, 2634–2643 (2020). PubMed PMC

Chen M. & Baker M. L. Automation and assessment of de novo modeling with Pathwalking in near atomic resolution cryo-EM density maps. J. Struct. Biol. 204, 555–563 (2018). PubMed

DiMaio F., Tyka M. D., Baker M. L., Chiu W. & Baker D. Refinement of protein structures into low-resolution density maps using rosetta. J. Mol. Biol. 392, 181–190 (2009). PubMed PMC

Webb B. & Sali A. Protein structure modeling with MODELLER. Methods Mol. Biol. 1137, 1–15 (2014). PubMed

Si D. et al. Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps. Sci. Rep. 10, 4282 (2020). PubMed PMC

Pfab J., Phan N. M. & Si D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl. Acad. Sci. U. S. A. 118, (2021). PubMed PMC

Igaev M., Kutzner C., Bock L. V., Vaiana A. C. & Grubmüller H. Automated cryo-EM structure refinement using correlation-driven molecular dynamics. Elife 8, (2019). PubMed PMC

Brown A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015). PubMed PMC

Yamashita K., Palmer C. M., Burnley T. & Murshudov G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr D Struct Biol 77, 1282–1291 (2021). PubMed PMC

Nicholls R. A., Fischer M., McNicholas S. & Murshudov G. N. Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr. D Biol. Crystallogr. 70, 2487–2499 (2014). PubMed PMC

Singharoy A. et al. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. Elife 5, (2016). PubMed PMC

Shekhar M. et al. CryoFold: determining protein structures and data-guided ensembles from cryo-EM density maps. Matter 4, 3195–3216 (2021). PubMed PMC

MacCallum J. L., Perez A. & Dill K. A. Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference. Proc. Natl. Acad. Sci. U. S. A. 112, 6985–6990 (2015). PubMed PMC

Perez A., MacCallum J. L. & Dill K. A. Accelerating molecular simulations of proteins using Bayesian inference on weak information. Proc. Natl. Acad. Sci. U. S. A. 112, 11846–11851 (2015). PubMed PMC

Chojnowski G. DoubleHelix: nucleic acid sequence identification, assignment and validation tool for cryo-EM and crystal structure models. Nucleic Acids Res. 51, 8255–8269 (2023). PubMed PMC

Hsin J., Arkhipov A., Yin Y., Stone J. E. & Schulten K. Using VMD: an introductory tutorial. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.7 (2008). PubMed PMC

Pettersen E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed

Goddard T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). PubMed PMC

Croll T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74, 519–530 (2018). PubMed PMC

Warshamanage R., Yamashita K. & Murshudov G. N. EMDA: A Python package for Electron Microscopy Data Analysis. J. Struct. Biol. 214, 107826 (2022). PubMed PMC

Burnley T., Palmer C. M. & Winn M. Recent developments in the CCP-EM software suite. Acta Crystallogr D Struct Biol 73, 469–477 (2017). PubMed PMC

Ramlaul K., Palmer C. M. & Aylett C. H. S. A Local Agreement Filtering Algorithm for Transmission EM Reconstructions. J. Struct. Biol. 205, 30–40 (2019). PubMed PMC

Rose Y. et al. RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and Efficient Access to Macromolecular Structure Data from the PDB Archive. J. Mol. Biol. 433, 166704 (2021). PubMed PMC

Burley S. K. et al. Electron microscopy holdings of the Protein Data Bank: the impact of the resolution revolution, new validation tools, and implications for the future. Biophys. Rev. 14, 1281–1301 (2022). PubMed PMC

Chen V. B., Davis I. W. & Richardson D. C. KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 18, 2403–2409 (2009). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...