Validation of ligands in macromolecular structures determined by X-ray crystallography
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
Grantová podpora
LM2015047
Ministerstvo Školství, Mládeǽe a Tělovýchovy - International
88944 and 104948
Wellcome Trust - United Kingdom
676559
European Union - International
Wellcome Trust - United Kingdom
LQ1601
Ministerstvo Školství, Mládeǽe a Tělovýchovy - International
PubMed
29533230
PubMed Central
PMC5947763
DOI
10.1107/s2059798318002541
PII: S2059798318002541
Knihovny.cz E-zdroje
- Klíčová slova
- PDB, Protein Data Bank, ligands, three-dimensional macromolecular structure, validation,
- MeSH
- databáze proteinů * MeSH
- konformace proteinů * MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- ligandy MeSH
- makromolekulární látky chemie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- proteiny analýza chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- Názvy látek
- ligandy MeSH
- makromolekulární látky MeSH
- proteiny MeSH
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) play a crucial role in structure-guided drug discovery and design, and also provide atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. The quality with which small-molecule ligands have been modelled in Protein Data Bank (PDB) entries has been, and continues to be, a matter of concern for many investigators. Correctly interpreting whether electron density found in a binding site is compatible with the soaked or co-crystallized ligand or represents water or buffer molecules is often far from trivial. The Worldwide PDB validation report (VR) provides a mechanism to highlight any major issues concerning the quality of the data and the model at the time of deposition and annotation, so the depositors can fix issues, resulting in improved data quality. The ligand-validation methods used in the generation of the current VRs are described in detail, including an examination of the metrics to assess both geometry and electron-density fit. It is found that the LLDF score currently used to identify ligand electron-density fit outliers can give misleading results and that better ligand-validation metrics are required.
Zobrazit více v PubMed
Adams, P. D. et al. (2016). Structure, 24, 502–508. PubMed PMC
Akker, F. van den & Hol, W. G. J. (1999). Acta Cryst. D55, 206–218. PubMed
Bell, J. A., Ho, K. L. & Farid, R. (2012). Acta Cryst. D68, 935–952. PubMed PMC
Berkholz, D. S., Faber, H. R., Savvides, S. N. & Karplus, P. A. (2008). J. Mol. Biol. 382, 371–384. PubMed PMC
Berman, H. M., Kleywegt, G. J., Nakamura, H. & Markley, J. L. (2013). Structure, 21, 1485–1491. PubMed PMC
Beshnova, D. A., Pereira, J. & Lamzin, V. S. (2017). Acta Cryst. D73, 195–202. PubMed PMC
Borbulevych, O. Y., Plumley, J. A., Martin, R. I., Merz, K. M. & Westerhoff, L. M. (2014). Acta Cryst. D70, 1233–1247. PubMed PMC
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. PubMed
Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R. & Verdonk, M. L. (1997). J. Comput. Aided Mol. Des. 11, 525–537. PubMed
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC
Davis, A. M., Stgallay, S. & Kleywegt, G. J. (2008). Drug Discov. Today, 13, 831–841. PubMed PMC
Deller, M. C. & Rupp, B. (2015). J. Comput. Aided Mol. Des. 29, 817–836. PubMed PMC
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. PubMed PMC
Engh, R. A. & Huber, R. (2001). International Tables for Crystallography, Vol. F, edited by M. G. Rossmann & E. Arnold, pp. 382–392. Dordrecht: Kluwer Academic Publishers.
Global Phasing Ltd (2011). BUSTER-Report. https://www.globalphasing.com/BUSTER/wiki/index.cgi?BusterReport.
Gore, S. et al. (2017). Structure, 25, 1916–1927. PubMed
Gore, S., Velankar, S. & Kleywegt, G. J. (2012). Acta Cryst. D68, 478–483. PubMed PMC
He, X., Alian, A., Stroud, R. & Ortiz de Montellano, P. R. (2006). J. Med. Chem. 49, 6308–6323. PubMed PMC
Huey, R., Morris, G. M., Olson, A. J. & Goodsell, D. S. (2007). J. Comput. Chem. 28, 1145–1152. PubMed
Janowski, P. A., Moriarty, N. W., Kelley, B. P., Case, D. A., York, D. M., Adams, P. D. & Warren, G. L. (2016). Acta Cryst. D72, 1062–1072. PubMed PMC
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110–119. PubMed
Kleywegt, G. J. (2000). Acta Cryst. D56, 249–265. PubMed
Kleywegt, G. J. (2007). Acta Cryst. D63, 94–100. PubMed PMC
Kleywegt, G. J., Harris, M. R., Zou, J., Taylor, T. C., Wählby, A. & Jones, T. A. (2004). Acta Cryst. D60, 2240–2249. PubMed
Kleywegt, G. J., Henrick, K., Dodson, E. J. & van Aalten, D. M. F. (2003). Structure, 11, 1051–1059. PubMed
Kleywegt, G. J. & Jones, T. A. (1995). Structure, 3, 535–540. PubMed
Kleywegt, G. J. & Jones, T. A. (1998). Acta Cryst. D54, 1119–1131. PubMed
Kleywegt, G. J. & Jones, T. A. (2002). Structure, 10, 465–472. PubMed
Liebeschuetz, J., Hennemann, J., Olsson, T. & Groom, C. R. (2012). J. Comput. Aided Mol. Des. 26, 169–183. PubMed PMC
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
Meyder, A., Nittinger, E., Lange, G., Klein, R. & Rarey, M. (2017). J. Chem. Inf. Model. 57, 2437–2447. PubMed
Mir, S. et al. (2018). Nucleic Acids Res. 46, D486–D492. PubMed PMC
Mir, R., Singh, N., Vikram, G., Kumar, R. P., Sinha, M., Bhushan, A., Kaur, P., Srinivasan, A., Sharma, S. & Singh, T. P. (2009). Biophys. J. 97, 3178–3186. PubMed PMC
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. (2009). Acta Cryst. D65, 1074–1080. PubMed PMC
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 2785–2791. PubMed PMC
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Naschberger, A., Fürnrohr, B. G., Lenac Rovis, T., Malic, S., Scheffzek, K., Dieplinger, H. & Rupp, B. (2016). Acta Cryst. D72, 1267–1280. PubMed PMC
Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, A. T. & Berman, H. M. (1996). Acta Cryst. D52, 57–64. PubMed
Pearce, N. M., Krojer, T., Bradley, A. R., Collins, P., Nowak, R. P., Talon, R., Marsden, B. D., Kelm, S., Shi, J., Deane, C. M. & von Delft, F. (2017). Nature Commun. 8, 15123. PubMed PMC
Pozharski, E., Weichenberger, C. X. & Rupp, B. (2013). Acta Cryst. D69, 150–167. PubMed
Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. (1963). J. Mol. Biol. 7, 95–99. PubMed
Read, R. J. et al. (2011). Structure, 19, 1395–1412. PubMed PMC
Rupp, B. (2010). Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology. New York: Garland Science.
Scapin, G., Patel, D. & Arnold, E. (2015). Multifaceted Roles of Crystallography in Modern Drug Discovery. Dordrecht: Springer.
Sehnal, D., Deshpande, M., Vařeková, R. S., Mir, S., Berka, K., Midlik, A., Pravda, L., Velankar, S. & Koča, J. (2017). Nature Methods, 14, 1121–1122. PubMed
Shen, H. (2014). Nature (London), 515, 151–152. PubMed
Shimizu, T., Nakatsu, T., Miyairi, K., Okuno, T. & Kato, H. (2002). Biochemistry, 41, 6651–6659. PubMed
Smart, O. S. & Bricogne, G. (2015). Multifaceted Roles of Crystallography in Modern Drug Discovery, edited by G. Scapin, D. Patel & E. Arnold, pp. 165–181. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9719-1_13.
Smart, O. S., Liebeschuetz, J. W., Sharff, A., Flensburg, C., Keller, P., Paciorek, W. & Bricogne, G. (2016). Assessing Ligand Strain Energy in BUSTER Protein-Complex Structure Refinement. https://eventbooking.stfc.ac.uk/uploads/ccp4_study_weekend_2016/assessing-ligand-strain-energy-in-buster-protein-complex-structure-refinement---oliver-smart.pdf.
Smart, O. S., Womack, T. O., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C. & Bricogne, G. (2012). Acta Cryst. D68, 368–380. PubMed PMC
Stierand, K. & Rarey, M. (2010). ACS Med. Chem. Lett. 1, 540–545. PubMed PMC
Tickle, I. J. (2012). Acta Cryst. D68, 454–467. PubMed PMC
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). Protein Eng. 8, 127–134. PubMed
Warren, G. L., Do, T. D., Kelley, B. P., Nicholls, A. & Warren, S. D. (2012). Drug Discov. Today, 17, 1270–1281. PubMed
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed
wwPDB (2016). User Guide to the wwPDB X-ray Validation Reports. https://www.wwpdb.org/validation/2016/XrayValidationReportHelp.
Zubieta, C., Kota, P., Ferrer, J.-L., Dixon, R. A. & Noel, J. P. (2002). Plant Cell, 14, 1265–1277. PubMed PMC
Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge
Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge
Worldwide Protein Data Bank validation information: usage and trends