New targets and procedures for validating the valence geometry of nucleic acid structures

. 2026 Jan 05 ; 54 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41521671

Grantová podpora
871037 Horizon 2020
RVO Dutch Cancer Society and of the Dutch Ministry of Health, Welfare and Sport
86652036 Dutch Cancer Society and of the Dutch Ministry of Health, Welfare and Sport
RVO Czech Academy of Sciences
86652036 Czech Academy of Sciences
R01 US National Institutes of Health
GM085328 US National Institutes of Health
R01 US National Institutes of Health
GM063210 US National Institutes of Health
BB/S007083/1 Ada Lovelace Centre (ALC)
BB/S007083/1 BBSRC

A Working Group consisting of the co-authors of this paper was established in 2020 to re-evaluate the standard valence geometry used for the validation of nucleic acid structure models in the Protein Data Bank (PDB). This Working Group re-examined the dependence of Cambridge Structural Database (CSD) derived targets on base and sugar type, sugar pucker, and phosphate and glycosidic conformation, before comparing those targets with the geometry of a quality-filtered reference set of nucleic acid crystal structural models held in the PDB. This revealed that the valence bond and angle mean values are close to the CSD targets, but many parameters have highly non-Gaussian or even multimodal distributions. One explanation is the inconsistency of restraints used over time and by different refinement programs. The Working Group recommends a new validation scheme for use by the PDB. For this purpose, we have developed a new three-tier scale for outlier detection-graded as Preferred, Allowed, and Of Concern intervals-based on a combination of quality-curated reference data from the CSD and the PDB. The proposed approach to validation should lead to improved nucleic acid models in (future) PDB-deposited macromolecular structures.

Zobrazit více v PubMed

Groom  CR, Bruno  IJ, Lightfoot  MP  et al.  The Cambridge Structural Database. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016;72:171–9. 10.1107/S2052520616003954. PubMed DOI PMC

Berman  HM. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. 10.1093/nar/28.1.235. PubMed DOI PMC

Berman  HM, Olson  WK, Beveridge  DL  et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992;63:751–9. 10.1016/S0006-3495(92)81649-1. PubMed DOI PMC

Lawson  CL, Berman  HM, Chen  L  et al.  The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res.  2024;52:D245–54. 10.1093/nar/gkad957. PubMed DOI PMC

Kowiel  M, Brzezinski  D, Jaskolski  M. Conformation-dependent restraints for polynucleotides: I. Clustering of the geometry of the phosphodiester group. Nucleic Acids Res. 2016;44:8479–89. 10.1093/nar/gkw717. PubMed DOI PMC

Gilski  M, Zhao  J, Kowiel  M  et al.  Accurate geometrical restraints for Watson–Crick base pairs. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2019;75:235–45. 10.1107/S2052520619002002. PubMed DOI PMC

Kowiel  M, Brzezinski  D, Gilski  M  et al.  Conformation-dependent restraints for polynucleotides: the sugar moiety. Nucleic Acids Res. 2020;48:962–73. 10.1093/nar/gkz1122. PubMed DOI PMC

Berkholz  DS, Shapovalov  MV, Dunbrack  RL  et al.  Conformation dependence of backbone geometry in proteins. Structure. 2009;17:1316–25. 10.1016/j.str.2009.08.012. PubMed DOI PMC

Schneider  B, Bruno  I, Burley  SK  et al.  Nucleic Acid Valence Geometry Working Group. IUCr Newsletter. 2020;28:16. http://iucr.org/news/newsletter/etc/articles?issue=150473&result_138339_result_page=16.

Clowney  L, Jain  SC, Srinivasan  AR  et al.  Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc. 1996;118:509–18. 10.1021/ja952883d. DOI

Taylor  R, Kennard  O. The molecular structures of nucleosides and nucleotides. J Mol Struct. 1982;78:1–28. 10.1016/0022-2860(82)85306-4. DOI

Murray-Rust  P, Motherwell  S. Computer retrieval and analysis of molecular geometry. III. Geometry of the β-1’-aminofuranoside fragment. Acta Crystallogr B Struct Sci. 1978;34:2534–46. 10.1107/S0567740878008559. DOI

Gelbin  A, Schneider  B, Clowney  L  et al.  Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc. 1996;118:519–29. 10.1021/ja9528846. DOI

Gore  S, Sanz García  E, Hendrickx  PMS  et al.  Validation of structures in the protein data bank. Structure. 2017;25:1916–27. 10.1016/j.str.2017.10.009. PubMed DOI PMC

Brunger  AT. X-PLOR version 3.1: A system for X-ray crystallography and NMR. New Haven, CT: Yale University Press. 1993.

Parkinson  G, Vojtechovsky  J, Clowney  L  et al.  New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr. 1996;52:57–64. 10.1107/S0907444995011115. PubMed DOI

Brunger  AT. Version 1.2 of the crystallography and NMR system. Nat Protoc. 2007;2:2728–33. 10.1038/nprot.2007.406. PubMed DOI

Saenger  W. Principles of nucleic acid structure. New York, NY: Springer New York. 1984.

Liebschner  D, Afonine  PV, Baker  ML  et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75:861–77. 10.1107/S2059798319011471. PubMed DOI PMC

Davis  IW, Leaver-Fay  A, Chen  VB  et al.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:W375–83. 10.1093/nar/gkm216. PubMed DOI PMC

Vagin  AA, Steiner  RA, Lebedev  AA  et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr. 2004;60:2184–95. 10.1107/S0907444904023510. PubMed DOI

Murshudov  GN, Skubák  P, Lebedev  AA  et al.  REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67. 10.1107/S0907444911001314. PubMed DOI PMC

Joosten  RP, Salzemann  J, Bloch  V  et al.  PDB_REDO: automated re-refinement of X-ray structure models in the PDB. J Appl Crystallogr. 2009;42:376–84. 10.1107/S0021889809008784. PubMed DOI PMC

Long  F, Nicholls  RA, Emsley  P  et al.  AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D Struct Biol. 2017;73:112–22. 10.1107/S2059798317000067. PubMed DOI PMC

Gražulis  S, Daškevič  A, Merkys  A  et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012;40:D420–7. 10.1093/nar/gkr900. PubMed DOI PMC

Nicholls  RA, Joosten  RP, Long  F  et al.  Modelling covalent linkages in CCP4. Acta Crystallogr D Struct Biol. 2021;77:712–26. 10.1107/S2059798321001753. PubMed DOI PMC

de Vries  I, Kwakman  T, Lu  X-J  et al.  New restraints and validation approaches for nucleic acid structures in PDB-REDO. Acta Crystallogr D Struct Biol. 2021;77:1127–41. 10.1107/S2059798321007610. PubMed DOI PMC

Bricogne  G, Blanc  E, Brandl  M  et al.  BUSTER. 2017; Cambridge, UK: Global Phasing Ltd.

Tronrud  DE. TNT refinement package. In: Carter  CW Jr., Sweet  RM, Methods in Enzymology. Cambridge, MA, USA: Academic Press, 1997, pp.306–19. PubMed

Sheldrick  GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71:3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Jain  S, Richardson  DC, Richardson  JS. Computational methods for RNA structure validation and improvement. In: Woodson  SA, Allain  FHT (eds.), Methods in Enzymology, Vol. 558, Cambridge, MA: Academic Press, 2015, 181–212. ISSN 0076-6879, ISBN 9780128019344 10.1016/bs.mie.2015.01.007. PubMed DOI

Bruno  IJ, Cole  JC, Edgington  PR  et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr B Struct Sci. 2002;58:389–97. 10.1107/S0108768102003324. PubMed DOI

Iglewicz  B, Hoaglin  DC. Volume 16: How to detect and handle outliers. Milwaukee, WI: American Society for Quality Control, Statistics Division. Quality Press. 1993.

Černý  J. Supplementary data for ‘new targets and procedures for validating the valence geometry of nucleic acid structures’. 2025. 10.5281/zenodo.15804876. PubMed DOI

Roll  J, Zirbel  CL, Sweeney  B  et al.  JAR3D Webserver: scoring and aligning RNA loop sequences to known 3D motifs. Nucleic Acids Res. 2016;44:W320–7. 10.1093/nar/gkw453. PubMed DOI PMC

Williams  CJ, Richardson  DC, Richardson  JS. The importance of residue-level filtering and the Top2018 best-parts dataset of high-quality protein residues. Protein Sci. 2022;31:290–300. 10.1002/pro.4239. PubMed DOI PMC

Černý  J, Božíková  P, Svoboda  J  et al.  A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48:6367–81. 10.1093/nar/gkaa383. PubMed DOI PMC

Černý  J, Malý  M  Božíková  P  et al.  DNATCO v5.0: integrated web platform for 3D nucleic acid structure analysis. Nucleic Acids Res. 2026; 10.1093/nar/gkaf1491. PubMed DOI PMC

Williams  CJ, Headd  JJ, Moriarty  NW  et al.  MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. 10.1002/pro.3330. PubMed DOI PMC

Word  JM, Lovell  SC, LaBean  TH  et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol. 1999;285:1711–33. 10.1006/jmbi.1998.2400. PubMed DOI

Richardson  JS, Moriarty  NW, Keedy  DA. Alternate conformations always want to spread. Computat Crystallogr Newslett. 2023;14:2–9.

Nakamura  T, Zhao  Y, Yamagata  Y  et al.  Watching DNA polymerase η make a phosphodiester bond. Nature. 2012;487:196–201. 10.1038/nature11181. PubMed DOI PMC

Binas  O, Tants  J-N, Peter  SA  et al.  Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res. 2020;48:7385–403. 10.1093/nar/gkaa465. PubMed DOI PMC

Emsley  P, Lohkamp  B, Scott  WG  et al.  Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. 10.1107/S0907444910007493. PubMed DOI PMC

Chen  VB, Davis  IW, Richardson  DC. KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 2009;18:2403–9. 10.1002/pro.250. PubMed DOI PMC

Parzen  E. On estimation of a probability density function and mode. Ann Math Statist. 1962;33:1065–76. 10.1214/aoms/1177704472. DOI

Schneider  B, Kabeláč  M, Hobza  P. Geometry of the phosphate group and its interactions with metal cations in crystals and DOI

Rozov  A, Demeshkina  N, Khusainov  I  et al.  Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nat Commun. 2016;7:10457. 10.1038/ncomms10457. PubMed DOI PMC

Leys  C, Ley  C, Klein  O  et al.  Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 2013;49:764–6. 10.1016/j.jesp.2013.03.013. DOI

Shao  C, Yang  H, Westbrook  JD  et al.  Multivariate analyses of quality metrics for crystal structures in the PDB archive. Structure. 2017;25:458–68. 10.1016/j.str.2017.01.013. PubMed DOI PMC

Sobolev  OV, Afonine  PV, Moriarty  NW  et al.  A global ramachandran score identifies protein structures with unlikely stereochemistry. Structure. 2020;28:1249–58. 10.1016/j.str.2020.08.005. PubMed DOI PMC

Smart  OS, Horský  V, Gore  S  et al.  Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr D Struct Biol. 2018;74:228–36. 10.1107/S2059798318002541. PubMed DOI PMC

Liebschner  D, Afonine  PV, Moriarty  NW  et al.  CERES: a cryo-EM re-refinement system for continuous improvement of deposited models. Acta Crystallogr D Struct Biol. 2021;77:48–61. 10.1107/S2059798320015879. PubMed DOI PMC

Richardson  JS, Williams  CJ, Hintze  BJ  et al.  Model validation: local diagnosis, correction and when to quit. Acta Crystallogr D Struct Biol. 2018;74:132–42. 10.1107/S2059798317009834. PubMed DOI PMC

Kleywegt  GJ, Jones  TA. Where freedom is given, liberties are taken. Structure. 1995;3:535–40. 10.1016/S0969-2126(01)00187-3. PubMed DOI

Richardson  JS, Williams  CJ, Chen  VB  et al.  The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions. Acta Crystallogr D Struct Biol. 2023;79:1071–8. 10.1107/S2059798323008847. PubMed DOI PMC

Moriarty  NW, Janowski  PA, Swails  JM  et al.  Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix. Acta Crystallogr D Struct Biol. 2020;76:51–62. 10.1107/S2059798319015134. PubMed DOI PMC

Jain  S, Kapral  GJ, Richardson  JS. Fitting Tips #7 - Getting the pucker right in RNA Structures. Computat Crystallogr Newsletter. 2014;5:2–9.

Kapral  G. RNA backbone validation, correction, and implications for RNA-protein interfaces. Dissertation, Durham, NC: Duke University. 2013.

Osterman  A, Mondragón  A. Structures of topoisomerase V in complex with DNA reveal unusual DNA-binding mode and novel relaxation mechanism. eLife. 2022;11:e72702. 10.7554/eLife.72702. PubMed DOI PMC

Nair  SK, Sliverman  SK, Chen  JH  et al.  Crystal structure analysis of TRF2-Dbd-DNA complex. 2012. 10.2210/pdb3SJM/pdb. DOI

Read  RJ, Adams  PD, Arendall  WB  et al.  A new generation of crystallographic validation tools for the protein data bank. Structure. 2011;19:1395–412. 10.1016/j.str.2011.08.006. PubMed DOI PMC

Montelione  GT, Nilges  M, Bax  A  et al.  Recommendations of the wwPDB NMR Validation Task Force. Structure. 2013;21:1563–70. 10.1016/j.str.2013.07.021. PubMed DOI PMC

Kleywegt  GJ, Adams  PD, Butcher  SJ  et al.  Community recommendations on cryo-EM data archiving and validation. IUCrJ. 2024;11:140–51. 10.1107/S2052252524001246. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...