New targets and procedures for validating the valence geometry of nucleic acid structures
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
871037
Horizon 2020
RVO
Dutch Cancer Society and of the Dutch Ministry of Health, Welfare and Sport
86652036
Dutch Cancer Society and of the Dutch Ministry of Health, Welfare and Sport
RVO
Czech Academy of Sciences
86652036
Czech Academy of Sciences
R01
US National Institutes of Health
GM085328
US National Institutes of Health
R01
US National Institutes of Health
GM063210
US National Institutes of Health
BB/S007083/1
Ada Lovelace Centre (ALC)
BB/S007083/1
BBSRC
PubMed
41521671
PubMed Central
PMC12791123
DOI
10.1093/nar/gkaf1335
PII: 8422378
Knihovny.cz E-zdroje
- MeSH
- databáze proteinů MeSH
- konformace nukleové kyseliny * MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- nukleové kyseliny * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleové kyseliny * MeSH
A Working Group consisting of the co-authors of this paper was established in 2020 to re-evaluate the standard valence geometry used for the validation of nucleic acid structure models in the Protein Data Bank (PDB). This Working Group re-examined the dependence of Cambridge Structural Database (CSD) derived targets on base and sugar type, sugar pucker, and phosphate and glycosidic conformation, before comparing those targets with the geometry of a quality-filtered reference set of nucleic acid crystal structural models held in the PDB. This revealed that the valence bond and angle mean values are close to the CSD targets, but many parameters have highly non-Gaussian or even multimodal distributions. One explanation is the inconsistency of restraints used over time and by different refinement programs. The Working Group recommends a new validation scheme for use by the PDB. For this purpose, we have developed a new three-tier scale for outlier detection-graded as Preferred, Allowed, and Of Concern intervals-based on a combination of quality-curated reference data from the CSD and the PDB. The proposed approach to validation should lead to improved nucleic acid models in (future) PDB-deposited macromolecular structures.
Department of Biochemistry Duke University Durham NC 27710 United States
Department of Biochemistry Vanderbilt University School of Medicine Nashville TN 37232 United States
Department of Crystallography Faculty of Chemistry Adam Mickiewicz University Poznan 61 614 Poland
Global Phasing Ltd Cambridge CB3 0AX United Kingdom
Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan 61 704 Poland
Institute of Biotechnology Czech Academy of Sciences 252 50 Vestec Czech Republic
Institute of Computing Science Poznan University of Technology Poznan 60 965 Poland
Zobrazit více v PubMed
Groom CR, Bruno IJ, Lightfoot MP et al. The Cambridge Structural Database. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016;72:171–9. 10.1107/S2052520616003954. PubMed DOI PMC
Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. 10.1093/nar/28.1.235. PubMed DOI PMC
Berman HM, Olson WK, Beveridge DL et al. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992;63:751–9. 10.1016/S0006-3495(92)81649-1. PubMed DOI PMC
Lawson CL, Berman HM, Chen L et al. The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res. 2024;52:D245–54. 10.1093/nar/gkad957. PubMed DOI PMC
Kowiel M, Brzezinski D, Jaskolski M. Conformation-dependent restraints for polynucleotides: I. Clustering of the geometry of the phosphodiester group. Nucleic Acids Res. 2016;44:8479–89. 10.1093/nar/gkw717. PubMed DOI PMC
Gilski M, Zhao J, Kowiel M et al. Accurate geometrical restraints for Watson–Crick base pairs. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2019;75:235–45. 10.1107/S2052520619002002. PubMed DOI PMC
Kowiel M, Brzezinski D, Gilski M et al. Conformation-dependent restraints for polynucleotides: the sugar moiety. Nucleic Acids Res. 2020;48:962–73. 10.1093/nar/gkz1122. PubMed DOI PMC
Berkholz DS, Shapovalov MV, Dunbrack RL et al. Conformation dependence of backbone geometry in proteins. Structure. 2009;17:1316–25. 10.1016/j.str.2009.08.012. PubMed DOI PMC
Schneider B, Bruno I, Burley SK et al. Nucleic Acid Valence Geometry Working Group. IUCr Newsletter. 2020;28:16. http://iucr.org/news/newsletter/etc/articles?issue=150473&result_138339_result_page=16.
Clowney L, Jain SC, Srinivasan AR et al. Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc. 1996;118:509–18. 10.1021/ja952883d. DOI
Taylor R, Kennard O. The molecular structures of nucleosides and nucleotides. J Mol Struct. 1982;78:1–28. 10.1016/0022-2860(82)85306-4. DOI
Murray-Rust P, Motherwell S. Computer retrieval and analysis of molecular geometry. III. Geometry of the β-1’-aminofuranoside fragment. Acta Crystallogr B Struct Sci. 1978;34:2534–46. 10.1107/S0567740878008559. DOI
Gelbin A, Schneider B, Clowney L et al. Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc. 1996;118:519–29. 10.1021/ja9528846. DOI
Gore S, Sanz García E, Hendrickx PMS et al. Validation of structures in the protein data bank. Structure. 2017;25:1916–27. 10.1016/j.str.2017.10.009. PubMed DOI PMC
Brunger AT. X-PLOR version 3.1: A system for X-ray crystallography and NMR. New Haven, CT: Yale University Press. 1993.
Parkinson G, Vojtechovsky J, Clowney L et al. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr. 1996;52:57–64. 10.1107/S0907444995011115. PubMed DOI
Brunger AT. Version 1.2 of the crystallography and NMR system. Nat Protoc. 2007;2:2728–33. 10.1038/nprot.2007.406. PubMed DOI
Saenger W. Principles of nucleic acid structure. New York, NY: Springer New York. 1984.
Liebschner D, Afonine PV, Baker ML et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75:861–77. 10.1107/S2059798319011471. PubMed DOI PMC
Davis IW, Leaver-Fay A, Chen VB et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:W375–83. 10.1093/nar/gkm216. PubMed DOI PMC
Vagin AA, Steiner RA, Lebedev AA et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr. 2004;60:2184–95. 10.1107/S0907444904023510. PubMed DOI
Murshudov GN, Skubák P, Lebedev AA et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67. 10.1107/S0907444911001314. PubMed DOI PMC
Joosten RP, Salzemann J, Bloch V et al. PDB_REDO: automated re-refinement of X-ray structure models in the PDB. J Appl Crystallogr. 2009;42:376–84. 10.1107/S0021889809008784. PubMed DOI PMC
Long F, Nicholls RA, Emsley P et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D Struct Biol. 2017;73:112–22. 10.1107/S2059798317000067. PubMed DOI PMC
Gražulis S, Daškevič A, Merkys A et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012;40:D420–7. 10.1093/nar/gkr900. PubMed DOI PMC
Nicholls RA, Joosten RP, Long F et al. Modelling covalent linkages in CCP4. Acta Crystallogr D Struct Biol. 2021;77:712–26. 10.1107/S2059798321001753. PubMed DOI PMC
de Vries I, Kwakman T, Lu X-J et al. New restraints and validation approaches for nucleic acid structures in PDB-REDO. Acta Crystallogr D Struct Biol. 2021;77:1127–41. 10.1107/S2059798321007610. PubMed DOI PMC
Bricogne G, Blanc E, Brandl M et al. BUSTER. 2017; Cambridge, UK: Global Phasing Ltd.
Tronrud DE. TNT refinement package. In: Carter CW Jr., Sweet RM, Methods in Enzymology. Cambridge, MA, USA: Academic Press, 1997, pp.306–19. PubMed
Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71:3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Jain S, Richardson DC, Richardson JS. Computational methods for RNA structure validation and improvement. In: Woodson SA, Allain FHT (eds.), Methods in Enzymology, Vol. 558, Cambridge, MA: Academic Press, 2015, 181–212. ISSN 0076-6879, ISBN 9780128019344 10.1016/bs.mie.2015.01.007. PubMed DOI
Bruno IJ, Cole JC, Edgington PR et al. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr B Struct Sci. 2002;58:389–97. 10.1107/S0108768102003324. PubMed DOI
Iglewicz B, Hoaglin DC. Volume 16: How to detect and handle outliers. Milwaukee, WI: American Society for Quality Control, Statistics Division. Quality Press. 1993.
Černý J. Supplementary data for ‘new targets and procedures for validating the valence geometry of nucleic acid structures’. 2025. 10.5281/zenodo.15804876. PubMed DOI
Roll J, Zirbel CL, Sweeney B et al. JAR3D Webserver: scoring and aligning RNA loop sequences to known 3D motifs. Nucleic Acids Res. 2016;44:W320–7. 10.1093/nar/gkw453. PubMed DOI PMC
Williams CJ, Richardson DC, Richardson JS. The importance of residue-level filtering and the Top2018 best-parts dataset of high-quality protein residues. Protein Sci. 2022;31:290–300. 10.1002/pro.4239. PubMed DOI PMC
Černý J, Božíková P, Svoboda J et al. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48:6367–81. 10.1093/nar/gkaa383. PubMed DOI PMC
Černý J, Malý M Božíková P et al. DNATCO v5.0: integrated web platform for 3D nucleic acid structure analysis. Nucleic Acids Res. 2026; 10.1093/nar/gkaf1491. PubMed DOI PMC
Williams CJ, Headd JJ, Moriarty NW et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. 10.1002/pro.3330. PubMed DOI PMC
Word JM, Lovell SC, LaBean TH et al. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol. 1999;285:1711–33. 10.1006/jmbi.1998.2400. PubMed DOI
Richardson JS, Moriarty NW, Keedy DA. Alternate conformations always want to spread. Computat Crystallogr Newslett. 2023;14:2–9.
Nakamura T, Zhao Y, Yamagata Y et al. Watching DNA polymerase η make a phosphodiester bond. Nature. 2012;487:196–201. 10.1038/nature11181. PubMed DOI PMC
Binas O, Tants J-N, Peter SA et al. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res. 2020;48:7385–403. 10.1093/nar/gkaa465. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG et al. Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. 10.1107/S0907444910007493. PubMed DOI PMC
Chen VB, Davis IW, Richardson DC. KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 2009;18:2403–9. 10.1002/pro.250. PubMed DOI PMC
Parzen E. On estimation of a probability density function and mode. Ann Math Statist. 1962;33:1065–76. 10.1214/aoms/1177704472. DOI
Schneider B, Kabeláč M, Hobza P. Geometry of the phosphate group and its interactions with metal cations in crystals and DOI
Rozov A, Demeshkina N, Khusainov I et al. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nat Commun. 2016;7:10457. 10.1038/ncomms10457. PubMed DOI PMC
Leys C, Ley C, Klein O et al. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 2013;49:764–6. 10.1016/j.jesp.2013.03.013. DOI
Shao C, Yang H, Westbrook JD et al. Multivariate analyses of quality metrics for crystal structures in the PDB archive. Structure. 2017;25:458–68. 10.1016/j.str.2017.01.013. PubMed DOI PMC
Sobolev OV, Afonine PV, Moriarty NW et al. A global ramachandran score identifies protein structures with unlikely stereochemistry. Structure. 2020;28:1249–58. 10.1016/j.str.2020.08.005. PubMed DOI PMC
Smart OS, Horský V, Gore S et al. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr D Struct Biol. 2018;74:228–36. 10.1107/S2059798318002541. PubMed DOI PMC
Liebschner D, Afonine PV, Moriarty NW et al. CERES: a cryo-EM re-refinement system for continuous improvement of deposited models. Acta Crystallogr D Struct Biol. 2021;77:48–61. 10.1107/S2059798320015879. PubMed DOI PMC
Richardson JS, Williams CJ, Hintze BJ et al. Model validation: local diagnosis, correction and when to quit. Acta Crystallogr D Struct Biol. 2018;74:132–42. 10.1107/S2059798317009834. PubMed DOI PMC
Kleywegt GJ, Jones TA. Where freedom is given, liberties are taken. Structure. 1995;3:535–40. 10.1016/S0969-2126(01)00187-3. PubMed DOI
Richardson JS, Williams CJ, Chen VB et al. The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions. Acta Crystallogr D Struct Biol. 2023;79:1071–8. 10.1107/S2059798323008847. PubMed DOI PMC
Moriarty NW, Janowski PA, Swails JM et al. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix. Acta Crystallogr D Struct Biol. 2020;76:51–62. 10.1107/S2059798319015134. PubMed DOI PMC
Jain S, Kapral GJ, Richardson JS. Fitting Tips #7 - Getting the pucker right in RNA Structures. Computat Crystallogr Newsletter. 2014;5:2–9.
Kapral G. RNA backbone validation, correction, and implications for RNA-protein interfaces. Dissertation, Durham, NC: Duke University. 2013.
Osterman A, Mondragón A. Structures of topoisomerase V in complex with DNA reveal unusual DNA-binding mode and novel relaxation mechanism. eLife. 2022;11:e72702. 10.7554/eLife.72702. PubMed DOI PMC
Nair SK, Sliverman SK, Chen JH et al. Crystal structure analysis of TRF2-Dbd-DNA complex. 2012. 10.2210/pdb3SJM/pdb. DOI
Read RJ, Adams PD, Arendall WB et al. A new generation of crystallographic validation tools for the protein data bank. Structure. 2011;19:1395–412. 10.1016/j.str.2011.08.006. PubMed DOI PMC
Montelione GT, Nilges M, Bax A et al. Recommendations of the wwPDB NMR Validation Task Force. Structure. 2013;21:1563–70. 10.1016/j.str.2013.07.021. PubMed DOI PMC
Kleywegt GJ, Adams PD, Butcher SJ et al. Community recommendations on cryo-EM data archiving and validation. IUCrJ. 2024;11:140–51. 10.1107/S2052252524001246. PubMed DOI PMC