DNATCO v5.0: integrated web platform for 3D nucleic acid structure analysis

. 2026 Jan 05 ; 54 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41495910

Grantová podpora
RVO 86652036 Czech Academy of Sciences

As the number and complexity of RNA and DNA structures continue to expand, there is a growing need for robust yet accessible tools that support their accurate interpretation, validation, and refinement. We present DNATCO v5.0 (dnatco.datmos.org), an interactive web application for comprehensive structural analysis of nucleic acids. DNATCO integrates the NtC dinucleotide conformational classes and the CANA structural alphabet to provide an intuitive, geometrically complete description of local backbone and base orientations, complemented by interactive visualization of base pairing. The platform performs quantitative validation of conformational similarity and covalent bond lengths and angles, using newly established nucleic-acid valence-geometry standards. Quantitative validation encompasses the confal score and scattergrams mapping the fit between experimental electron density and geometry similarity to the closest NtC class. All outputs are downloadable. Integrated diagnostic tools help users identify unusual or problematic regions, explore alternative conformations, and generate torsion-restraint files for downstream. DNATCO v5.0 is implemented entirely client-side via WebAssembly, ensuring fast performance and preserving data privacy, and supports both PDB and user-provided structural models. By combining a rigorous geometric framework with an approachable interface, DNATCO enables both non-experts and specialists to evaluate nucleic-acid structures with greater confidence and to improve models in ways that support accurate biological interpretation.

Zobrazit více v PubMed

Watson  JD, Crick  FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8. 10.1038/171737a0. PubMed DOI

Wilkins  MH, Stokes  AR, Wilson  HR. Molecular structure of deoxypentose nucleic acids. Nature. 1953;171:738–40. 10.1038/171738a0. PubMed DOI

Franklin  RE, Gosling  RG. Molecular configuration in sodium thymonucleate. Nature. 1953;171:740–1. 10.1038/171740a0. PubMed DOI

Tocilj  A, Schlunzen  F, Janell  D  et al.  The small ribosomal subunit from Termus termophilus at 4.5 Å resolution: pattern fittings and the identification of a functional site. Proc Natl Acad Sci USA. 1999;96:14252–7. 10.1073/pnas.96.25.14252. PubMed DOI PMC

Ban  N, Nissen  P, Hansen  J  et al.  The complete atomic structure of the large ribosomal subunit at a 2.4 Å resolution. Science. 2000;289:905–20. 10.1126/science.289.5481.905. PubMed DOI

Wimberly  BT, Brodersen  DE, Clemons  WM  Jr  et al.  Structure of the 30S ribosomal subunit. Nature. 2000;407:327–39. 10.1038/35030006. PubMed DOI

Yusupov  MM, Yusupova  GZ, Baucom  A  et al.  Crystal structure of the ribosome at 5.5 Å resolution. Science. 2001;292:883–96. 10.1126/science.1060089. PubMed DOI

Bernstein  FC, Koetzle  TF, Williams  GJB  et al.  Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112:535–42. 10.1016/S0022-2836(77)80200-3. PubMed DOI

Berman  HM, Olson  WK, Beveridge  DL  et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992;63:751–9. 10.1016/S0006-3495(92)81649-1. PubMed DOI PMC

Gendron  P, Lemieux  S, Major  F. Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol. 2001;308:919–36. 10.1006/jmbi.2001.4626. PubMed DOI

Lavery  R, Moakher  M, Maddocks  JH  et al.  Conformational analysis of nucleic acids revisited: curves+. Nucleic Acids Res. 2009;37:5917–29. 10.1093/nar/gkp608. PubMed DOI PMC

Zadeh  JN, Steenberg  CD, Bois  JS  et al.  NUPACK: analysis and design of nucleic acid systems. J Comput Chem. 2011;32:170–3. 10.1002/jcc.21596. PubMed DOI

Walen  T, Chojnowski  G, Gierski  P  et al.  ClaRNA: a classifier of contacts in RNA 3D structures based on a comparative analysis of various classification schemes. Nucleic Acids Res. 2014;42:e151. 10.1093/nar/gku765. PubMed DOI PMC

Lu  XJ, Bussemaker  HJ, Olson  WK. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;43:e142. PubMed PMC

Cerny  J, Bozikova  P, Schneider  B. DNATCO: assignment of DNA conformers at dnatco.org. Nucleic Acids Res. 2016;44:W284–7. 10.1093/nar/gkw381. PubMed DOI PMC

Sagendorf  JM, Markarian  N, Berman  HM  et al.  DNAproDB: an expanded database and web-based tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2020;48:D277–87. PubMed PMC

Biedermannova  L, Cerny  J, Maly  M  et al.  Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks. Acta Crystallogr D Struct Biol. 2022;78:1032–45. 10.1107/S2059798322006234. PubMed DOI PMC

Zok  T, Kraszewska  N, Miskiewicz  J  et al.  ONQUADRO: a database of experimentally determined quadruplex structures. Nucleic Acids Res. 2022;50:D253–8. 10.1093/nar/gkab1118. PubMed DOI PMC

Moafinejad  SN, de Aquino  BRH, Boniecki  MJ  et al.  SimRNAweb v2.0: a web server for RNA folding simulations and 3D structure modeling, with optional restraints and enhanced analysis of folding trajectories. Nucleic Acids Res. 2024;52:W368–73. 10.1093/nar/gkae356. PubMed DOI PMC

Mackowiak  M, Adamczyk  B, Szachniuk  M  et al.  RNAtango: analysing and comparing RNA 3D structures via torsional angles. PLoS Comput Biol. 2024;20:e1012500. 10.1371/journal.pcbi.1012500. PubMed DOI PMC

Lawson  CL, Berman  HM, Chen  L  et al.  The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res. 2024;52:D245–54. 10.1093/nar/gkad957. PubMed DOI PMC

Joosten  RP, Long  F, Murshudov  GN  et al.  The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1:213–20. 10.1107/S2052252514009324. PubMed DOI PMC

Berman  HM, Battistuz  T, Bhat  TN  et al.  The Protein Data Bank. Acta Crystallogr D Biol Crystallogr. 2002;58:899–907. 10.1107/S0907444902003451. PubMed DOI

Egli  M. Nucleic acid crystallography: current progress. Curr Opin Chem Biol. 2004;8:580–91. 10.1016/j.cbpa.2004.09.004. PubMed DOI

Harp  JM, Coates  L, Sullivan  B  et al.  Water structure around a left-handed Z-DNA fragment analyzed by cryo neutron crystallography. Nucleic Acids Res. 2021;49:4782–92. 10.1093/nar/gkab264. PubMed DOI PMC

Bermejo  GA, Clore  GM, Schwieters  CD. Improving NMR structures of RNA. Structure. 2016;24:806–15. 10.1016/j.str.2016.03.007. PubMed DOI PMC

Egelman  EH. The current revolution in cryo-EM. Biophys J. 2016;110:1008–12. 10.1016/j.bpj.2016.02.001. PubMed DOI PMC

Bonilla  SL, Kieft  JS. The promise of cryo-EM to explore RNA structural dynamics. J Mol Biol. 2022;434:167802. 10.1016/j.jmb.2022.167802. PubMed DOI PMC

Misiaszek  AD, Girbig  M, Grotsch  H  et al.  Cryo-EM structures of human RNA polymerase I. Nat Struct Mol Biol. 2021;28:997–1008. 10.1038/s41594-021-00693-4. PubMed DOI PMC

Pellegrino  S, Dent  KC, Spikes  T  et al.  Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 A resolution. Nucleic Acids Res. 2023;51:4043–54. 10.1093/nar/gkad194. PubMed DOI PMC

Sponer  J, Bussi  G, Krepl  M  et al.  RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118:4177–338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Schneider  B, Sweeney  BA, Bateman  A  et al.  When will RNA get its AlphaFold moment?. Nucleic Acids Res. 2023;51:9522–32. 10.1093/nar/gkad726. PubMed DOI PMC

Brandenburg  VB, Narberhaus  F, Mosig  A. Inverse folding based pre-training for the reliable identification of intrinsic transcription terminators. PLoS Comput Biol. 2022;18:e1010240. 10.1371/journal.pcbi.1010240. PubMed DOI PMC

Taylor  R, Kennard  O. The molecular structures of nucleosides and nucleotides part I. J Mol Struct. 1982;78:1–28. 10.1016/0022-2860(82)85306-4. DOI

Taylor  R, Kennard  O. The estimation of average molecular dimensions from crystallographic data. Acta Crystallogr B Struct Sci. 1983;39:517–25. 10.1107/S0108768183002797. DOI

Allen  FH, Bellard  S, Brice  MD  et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information. Acta Crystallogr B Struct Sci. 1979;35:2331–9. 10.1107/S0567740879009249. DOI

Clowney  L, Jain  SC, Srinivasan  AR  et al.  Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc. 1996;118:509–18. 10.1021/ja952883d. DOI

Gelbin  A, Schneider  B, Clowney  L  et al.  Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc. 1996;118:519–29. 10.1021/ja9528846. DOI

Saenger  W. Principles of nucleic acid structure. New York, NY, USA: Springer, 1984; 10: 0-387-90761-0

Leontis  NB, Westhof  E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. 10.1017/S1355838201002515. PubMed DOI PMC

Leontis  NB, Stombaugh  J, Westhof  E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30:3497–531. 10.1093/nar/gkf481. PubMed DOI PMC

Kim  S-H, Berman  HM, Newton  MD  et al.  Seven basic conformations of nucleic acid structural units. Acta Crystallogr B Struct Sci. 1973;29:703–10. 10.1107/S0567740873003201. DOI

Murray  LJ, Arendall  WB, 3rd, Richardson  DC  et al.  RNA backbone is rotameric. Proc Natl Acad Sci USA. 2003;100:13904–9. 10.1073/pnas.1835769100. PubMed DOI PMC

Hershkovitz  E, Tannenbaum  E, Howerton  SB  et al.  Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA. Nucleic Acids Res. 2003;31:6249–57. 10.1093/nar/gkg835. PubMed DOI PMC

Schneider  B, Moravek  Z, Berman  HM. RNA conformational classes. Nucleic Acids Res. 2004;32:1666–77. 10.1093/nar/gkh333. PubMed DOI PMC

Richardson  JS, Schneider  B, Murray  LW  et al.  RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA. 2008;14:465–81. 10.1261/rna.657708. PubMed DOI PMC

Cerny  J, Bozikova  P, Svoboda  J  et al.  A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48:6367–81. 10.1093/nar/gkaa383. PubMed DOI PMC

Cerny  J, Bozikova  P, Maly  M  et al.  Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr D Struct Biol. 2020;76:805–13. 10.1107/S2059798320009389. PubMed DOI PMC

Westbrook  JD, Young  JY, Shao  C  et al.  PDBx/mmCIF ecosystem: foundational semantic tools for structural biology. J Mol Biol. 2022;434:167599. 10.1016/j.jmb.2022.167599. PubMed DOI PMC

Sehnal  D, Bittrich  S, Deshpande  M  et al.  Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC

Liebschner  D, Afonine  PV, Baker  ML  et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75:861–77. 10.1107/S2059798319011471. PubMed DOI PMC

Feng  Z, Hsieh  S-H, Gelbin  A  et al. . MAXIT: Macromolecular Exchange and Input Tool. NJ, USA: Rutgers University, 1998.

Černý  J, Nicholls  RA, Brzezinski  D  et al.  New targets and procedures for validating the valence geometry of nucleic acid structures. Nucleic Acids Res. 2025. 10.1093/nar/gkaf1335. DOI

Sarver  M, Zirbel  CL, Stombaugh  J  et al.  FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol. 2008;56:215–52. 10.1007/s00285-007-0110-x. PubMed DOI PMC

Tishchenko  S, Kostareva  O, Gabdulkhakov  A  et al.  Protein-RNA affinity of ribosomal protein L1 mutants does not correlate with the number of intermolecular interactions. Acta Crystallogr D Biol Crystallogr. 2015;71:376–86. 10.1107/S1399004714026248. PubMed DOI

Berman  HM, Kleywegt  GJ, Nakamura  H  et al.  The Protein Data Bank archive as an open data resource. J Comput Aided Mol Des. 2014;28:1009–14. 10.1007/s10822-014-9770-y. PubMed DOI PMC

Schroeder  GM, Dutta  D, Cavender  CE  et al.  Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. Nucleic Acids Res. 2020;48:8146–64. 10.1093/nar/gkaa546. PubMed DOI PMC

Sharma  D, De Falco  L, Padavattan  S  et al.  PARP1 exhibits enhanced association and catalytic efficiency with gammaH2A.X-nucleosome. Nat Commun. 2019;10:5751. 10.1038/s41467-019-13641-0. PubMed DOI PMC

Schneider  B, Bozikova  P, Cech  P  et al.  A DNA structural alphabet distinguishes structural features of DNA bound to regulatory proteins and in the nucleosome core particle. Genes. 2017;8:278. 10.3390/genes8100278 . PubMed DOI PMC

Murshudov  G, Dodson  E, Vagin  A. In: Dodson  E, Moore  M, Ralph  A, Bailey  S. (eds), Proceedings of the CCP4 study weekend: macromolecular refinement. CCLRC Daresbury Laboratory. Warrington, UK, 1996, 93–104.

Agirre  J, Atanasova  M, Bagdonas  H  et al.  The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol. 2023;79:449–61. 10.1107/S2059798323003595. PubMed DOI PMC

Roversi  P, Blanc  E, Vonrhein  C  et al.  Modelling prior distributions of atoms for macromolecular refinement and completion. Acta Crystallogr D Biol Crystallogr. 2000;56:1316–23. 10.1107/S0907444900008490. PubMed DOI

Flores  SC, Altman  RB. Turning limited experimental information into 3D models of RNA. RNA. 2010;16:1769–78. 10.1261/rna.2112110. PubMed DOI PMC

Haider  S, Parkinson  GN, Neidle  S. Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J Mol Biol. 2002;320:189–200. 10.1016/S0022-2836(02)00428-X. PubMed DOI

Mandal  PK, Baptiste  B, Langlois d’Estaintot  B  et al.  Multivalent interactions between an aromatic helical foldamer and a DNA G-quadruplex in the solid state. ChemBioChem. 2016;17:1911–4. 10.1002/cbic.201600281. PubMed DOI

Kolenko  P, Svoboda  J, Cerny  J  et al.  Structural variability of CG-rich DNA 18-mers accommodating double T-T mismatches. Acta Crystallogr D Struct Biol. 2020;76:1233–43. 10.1107/S2059798320014151. PubMed DOI PMC

Svoboda  J, Berdar  D, Kolenko  P  et al.  Conformation-based refinement of 18-mer DNA structures. Acta Crystallogr D Struct Biol. 2023;79:655–65. 10.1107/S2059798323004679. PubMed DOI PMC

Soltysova  M, Sieglova  I, Fabry  M  et al.  Structural insight into DNA recognition by bacterial transcriptional regulators of the SorC/DeoR family. Acta Crystallogr D Struct Biol. 2021;77:1411–24. 10.1107/S2059798321009633. PubMed DOI

Soltysova  M, Skerlova  J, Pachl  P  et al.  Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function. Nucleic Acids Res. 2024;52:7305–20. 10.1093/nar/gkae434. PubMed DOI PMC

Duarte  CM, Pyle  AM. Stepping through an RNA structure: a novel approach to conformational analysis. J Mol Biol. 1998;284:1465–78. 10.1006/jmbi.1998.2233. PubMed DOI

Lu  XJ, Olson  WK. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc. 2008;3:1213–27. 10.1038/nprot.2008.104. PubMed DOI PMC

Flick  KE, Jurica  MS, Monnat  RJ  et al.  DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature. 1998;394:96–101. 10.1038/27952. PubMed DOI

Hashimoto  H, Olanrewaju  YO, Zheng  Y  et al.  Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 2014;28:2304–13. 10.1101/gad.250746.114. PubMed DOI PMC

Tumbale  PP, Jurkiw  TJ, Schellenberg  MJ  et al.  Two-tiered enforcement of high-fidelity DNA ligation. Nat Commun. 2019;10:5431. 10.1038/s41467-019-13478-7. PubMed DOI PMC

Hartmann  B, Piazzola  D, Lavery  R. B PubMed DOI PMC

Humphris-Narayanan  E, Pyle  AM. Discrete RNA libraries from pseudo-torsional space. J Mol Biol. 2012;421:6–26. 10.1016/j.jmb.2012.03.002. PubMed DOI PMC

Shi  H, Moore  PB. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA. 2000;6:1091–105. 10.1017/S1355838200000364. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...