• This record comes from PubMed

Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function

. 2024 Jul 08 ; 52 (12) : 7305-7320.

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
23-06295S Czech Science Foundation
LX22NPO5103 National Institute of virology and bacteriology
European Union - Next Generation EU
Ministry of Education
European Union
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.

Erratum In

PubMed

See more in PubMed

Browning  D.F., Busby  S.J.  The regulation of bacterial transcription initiation. Nat. Rev. Micro.  2004; 2:57–65. PubMed

Paysan-Lafosse  T., Blum  M., Chuguransky  S., Grego  T., Pinto  B.L., Salazar  G.A., Bileschi  M.L., Bork  P., Bridge  A., Colwell  L.  et al. .  InterPro in 2022. Nucleic Acids Res.  2023; 51:D418–D427. PubMed PMC

Sprenger  G.A., Lengeler  J.W.  L-sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. J. Bacteriol.  1984; 157:39–45. PubMed PMC

Fillinger  S., Boschi-Muller  S., Azza  S., Dervyn  E., Branlant  G., Aymerich  S.  Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J. Biol. Chem.  2000; 275:14031–14037. PubMed

Saxild  H.H., Andersen  L.N., Hammer  K.  Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J. Bacteriol.  1996; 178:424–434. PubMed PMC

Bekal-Si Ali  S., Diviès  C., Prévost  H.  Genetic organization of the citCDEF locus and identification of mae and clyR genes from Leuconostoc mesenteroides. J. Bacteriol.  1999; 181:4411–4416. PubMed PMC

Sangari  F.J., Agüero  J., Garcı  A.L.J.M.  The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology (Reading). 2000; 146:487–495. PubMed

Heuel  H., Shakeri-Garakani  A., Turgut  S., Lengeler  J.W.  Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae. Microbiology (N Y). 1998; 144:1631–1639. PubMed

Martin  M.G., Magni  C., de Mendoza  D., López  P.  CitI, a transcription factor involved in regulation of citrate metabolism in lactic acid bacteria. J. Bacteriol.  2005; 187:5146–5155. PubMed PMC

Xue  T., Zhao  L., Sun  H., Zhou  X., Sun  B.  LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res.  2009; 19:1258–1268. PubMed

Choi  J., Shin  D., Kim  M., Park  J., Lim  S., Ryu  S.  LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and Flagella genes. PLoS One. 2012; 7:e37059. PubMed PMC

de Sanctis  D., McVey  C.E., Enguita  F.J., Carrondo  M.A.  Crystal structure of the full-length sorbitol operon regulator SorC from Klebsiella pneumoniae: structural evidence for a novel transcriptional regulation mechanism. J. Mol. Biol.  2009; 387:759–770. PubMed

Řezáčová  P., Kožíšek  M., Moy  S.F., Sieglová  I., Joachimiak  A., Machius  M., Otwinowski  Z.  Crystal structures of the effector-binding domain of repressor Central glycolytic gene Regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Mol. Microbiol.  2008; 69:895–910. PubMed PMC

Škerlová  J., Fábry  M., Hubálek  M., Otwinowski  Z., Řezáčová  P.  Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis. FEBS J.  2014; 281:4280–4292. PubMed

Ha  J.H., Eo  Y., Grishaev  A., Guo  M., Smith  J.A., Sintim  H.O., Kim  E.H., Cheong  H.K., Bentley  W.E., Ryu  K.S.  Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. J. Am. Chem. Soc.  2013; 135:15526–15535. PubMed PMC

Chaix  D., Ferguson  M.L., Atmanene  C., Van Dorsselaer  A., Sanglier-Cianferani  S., Royer  C.A., Declerck  N.  Physical basis of the inducer-dependent cooperativity of the Central glycolytic genes repressor/DNA complex. Nucleic Acids Res.  2010; 38:5944–5957. PubMed PMC

Medvedev  K.E., Kinch  L.N., Dustin Schaeffer  R., Pei  J., Grishin  N.V.  A fifth of the protein world: rossmann-like proteins as an evolutionarily successful structural unit. J. Mol. Biol.  2021; 433:166788. PubMed PMC

Anantharaman  V., Aravind  L.  Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase. J. Mol. Biol.  2006; 356:823–842. PubMed

Zeng  X., Saxild  H.H., Switzer  R.L.  Purification and characterization of the DeoR repressor of Bacillus subtilis. J. Bacteriol.  2000; 182:1916–1922. PubMed PMC

Wu  M., Tao  Y., Liu  X., Zang  J.  Structural basis for phosphorylated autoinducer-2 modulation of the oligomerization state of the global transcription regulator LsrR from Escherichia coli. J. Biol. Chem.  2013; 288:15878–15887. PubMed PMC

Doan  T., Aymerich  S.  Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol.  2003; 47:1709–1721. PubMed

Zorrilla  S., Chaix  D., Ortega  A., Alfonso  C., Doan  T., Margeat  E., Rivas  G., Aymerich  S., Declerck  N., Royer  C.A.  Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the Central glycolytic genes repressor (CggR). Biochemistry. 2007; 46:14996–15008. PubMed

Jacob  F., Monod  J.  Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol.  1961; 3:318–356. PubMed

Šoltysová  M., Sieglová  I., Fábry  M., Brynda  J., Škerlová  J., Řezáčová  P.  Structural insight into DNA recognition by bacterial transcriptional regulators of the SorC/DeoR family. Acta Crystallogr D Struct Biol. 2021; 77:1411–1424. PubMed

Doan  T., Martin  L., Zorrilla  S., Chaix  D., Aymerich  S., Labesse  G., Declerck  N.  A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor. Proteins Struct. Funct. Bioinf.  2008; 71:2038–2050. PubMed

Meinken  C., Blencke  H.-M., Ludwig  H., Stülke  J.  Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon. Microbiology (N Y). 2003; 149:751–761. PubMed

Ludwig  H., Homuth  G., Schmalisch  M., Dyka  F.M., Hecker  M., Stülke  J.  Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol. Microbiol.  2001; 41:409–422. PubMed

Zeng  X., Saxild  H.H.  Identification and characterization of a DeoR-specific operator sequence essential for induction of dra-nupC-pdp operon expression in Bacillus subtilis. J. Bacteriol.  1999; 181:1719–1727. PubMed PMC

Procházková  K., Čermáková  K., Pachl  P., Sieglová  I., Fábry  M., Otwinowski  Z., Řezáčová  P.  Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis. Acta. Crystallogr. D Biol. Crystallogr.  2012; 68:176–185. PubMed PMC

Řezáčová  P., Krejčiříková  V., Borek  D., Moy  S.F., Joachimiak  A., Otwinowski  Z.  The crystal structure of the effector-binding domain of the trehalose repressor TreR from Bacillus subtilis 168 reveals a unique quarternary assembly. Proteins Struct. Funct. Bioinf.  2007; 69:679–682. PubMed PMC

Reinhard  L., Mayerhofer  H., Geerlof  A., Mueller-Dieckmann  J., Weiss  M.S.  Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.  2013; 69:209–214. PubMed PMC

Ericsson  U.B., Hallberg  B.M., DeTitta  G.T., Dekker  N., Nordlund  P.  Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem.  2006; 357:289–298. PubMed

Bradford  M.  A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.  1976; 72:248–254. PubMed

Wu  D., Piszczek  G.  Standard protocol for mass photometry experiments. Eur. Biophys. J.  2021; 50:403–409. PubMed PMC

Mueller  U., Förster  R., Hellmig  M., Huschmann  F.U., Kastner  A., Malecki  P., Pühringer  S., Röwer  M., Sparta  K., Steffien  M.  et al. .  The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur. Phys. J. Plus. 2015; 130:141.

Kabsch  W  XDS. Acta. Crystallogr. D Biol. Crystallogr.  2010; 66:125–132. PubMed PMC

Vagin  A., Teplyakov  A.  Molecular replacement with MOLREP. Acta. Crystallogr. D Biol. Crystallogr.  2010; 66:22–25. PubMed

Vagin  A., Teplyakov  A.  An approach to multi-copy search in molecular replacement. Acta. Crystallogr. D Biol. Crystallogr.  2000; 56:1622–1624. PubMed

Collaborative Computational Project,N. 4  The CCP4 suite: programs for protein crystallography. Acta. Crystallogr. D Biol. Crystallogr.  1994; 50:760–763. PubMed

Winn  M.D., Ballard  C.C., Cowtan  K.D., Dodson  E.J., Emsley  P., Evans  P.R., Keegan  R.M., Krissinel  E.B., Leslie  A.G., McCoy  A.  et al. .  Overview of the CCP4 suite and current developments. Acta. Crystallogr. D Biol. Crystallogr.  2011; 67:235–242. PubMed PMC

Contreras-Moreira  B., Branger  P.-A., Collado-Vides  J.  TFmodeller: comparative modelling of protein–DNA complexes. Bioinformatics. 2007; 23:1694–1696. PubMed

Chen  C.S., White  A., Love  J., Murphy  J.R., Ringe  D.  Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry. 2000; 39:10397–10407. PubMed

Emsley  P., Cowtan  K.  Coot: model building tools for molecular graphics. Acta. Crystallogr. D Biol. Crystallogr.  2004; 60:2126–2132. PubMed

Kovalevskiy  O., Nicholls  R.A., Murshudov  G.N.  Automated refinement of macromolecular structures at low resolution using prior information. Acta Crystallogr. D Struct. Biol.  2016; 72:1149–1161. PubMed PMC

Kovalevskiy  O., Nicholls  R.A., Long  F., Carlon  A., Murshudov  G.N.  Overview of refinement procedures within REFMAC 5: utilizing data from different sources. Acta Crystallogr. D Struct. Biol.  2018; 74:215–227. PubMed PMC

Černý  J., Božíková  P., Malý  M., Tykač  M., Biedermannová  L., Schneider  B.  Structural alphabets for conformational analysis of nucleic acids available at dnatco.Datmos.Org. Acta Crystallogr. D Struct. Biol.  2020; 76:805–813. PubMed PMC

Černý  J., Božíková  P., Svoboda  J., Schneider  B.  A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res.  2020; 48:6367–6381. PubMed PMC

Williams  C.J., Headd  J.J., Moriarty  N.W., Prisant  M.G., Videau  L.L., Deis  L.N., Verma  V., Keedy  D.A., Hintze  B.J., Chen  V.B.  et al. .  MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci.  2018; 27:293–315. PubMed PMC

Krissinel  E., Henrick  K.  Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Crystallogr. D Biol. Crystallogr.  2004; 60:2256–2268. PubMed

Krissinel  E., Henrick  K.  Inference of macromolecular assemblies from crystalline State. J. Mol. Biol.  2007; 372:774–797. PubMed

Diederichs  K., Karplus  P.A.  Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol.  1997; 4:269–275. PubMed

Karplus  P.A., Diederichs  K.  Linking crystallographic model and data quality. Science (1979). 2012; 336:1030–1033. PubMed PMC

Brünger  A.T.  Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature. 1992; 355:472–475. PubMed

Mastronarde  D.N.  Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.  2005; 152:36–51. PubMed

Zheng  S.Q., Palovcak  E., Armache  J.-P., Verba  K.A., Cheng  Y., Agard  D.A.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC

Zhang  K.  Gctf: real-time CTF determination and correction. J. Struct. Biol.  2016; 193:1–12. PubMed PMC

Wagner  T., Raunser  S.  The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows. Commun. Biol.  2020; 3:61. PubMed PMC

Tang  G., Peng  L., Baldwin  P.R., Mann  D.S., Jiang  W., Rees  I., Ludtke  S.J.  EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol.  2007; 157:38–46. PubMed

Wagner  T., Merino  F., Stabrin  M., Moriya  T., Antoni  C., Apelbaum  A., Hagel  P., Sitsel  O., Raisch  T., Prumbaum  D.  et al. .  SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol.  2019; 2:218. PubMed PMC

Zivanov  J., Nakane  T., O Forsberg  B., Kimanius  D., Hagen  W.J., Lindahl  E., Scheres  S.H  New tools for automated high-resolution cryo-EM structure determination inRELION-3. eLife. 2018; 7:e42166. PubMed PMC

Punjani  A., Rubinstein  J.L., Fleet  D.J., Brubaker  M.A.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017; 14:290–296. PubMed

Liebschner  D., Afonine  P.V., Baker  M.L., Bunkóczi  G., Chen  V.B., Croll  T.I., Hintze  B., Hung  L.-W., Jain  S., McCoy  A.J.  et al. .  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol.  2019; 75:861–877. PubMed PMC

Ross  D.W.  Sense and antisense oligonucleotides. Arch. Pathol. Lab. Med.  1990; 114:1296. PubMed

Qi  Y., Hulett  F.M.  PhoP∼P and RNA polymerase σ A holoenzyme are sufficient for transcription of pho regulon promoters in Bacillus subtilis : phoP∼P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol.  1998; 28:1187–1197. PubMed

Chang  B.Y., Doi  R.H.  Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J. Bacteriol.  1990; 172:3257–3263. PubMed PMC

Juang  Y.-L., Helmann  J.D.  The δ subunit of Bacillus subtilis RNA polymerase. J. Mol. Biol.  1994; 239:1–14. PubMed

Krásný  L., Tišerová  H., Jonák  J., Rejman  D., Šanderová  H.  The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol.  2008; 69:42–54. PubMed

Ishihama  A., Kori  A., Koshio  E., Yamada  K., Maeda  H., Shimada  T., Makinoshima  H., Iwata  A., Fujita  N.  Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J. Bacteriol.  2014; 196:2718–2727. PubMed PMC

Jerabek-Willemsen  M., Wienken  C.J., Braun  D., Baaske  P., Duhr  S.  Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol.  2011; 9:342–353. PubMed PMC

Jerabek-Willemsen  M., André  T., Wanner  R., Roth  H.M., Duhr  S., Baaske  P., Breitsprecher  D.  MicroScale thermophoresis: interaction analysis and beyond. J. Mol. Struct.  2014; 1077:101–113.

Blanchet  C., Pasi  M., Zakrzewska  K., Lavery  R.  CURVES+ web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res.  2011; 39:W68–W73. PubMed PMC

Rohs  R., Jin  X., West  S.M., Joshi  R., Honig  B., Mann  R.S.  Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem.  2010; 79:233–269. PubMed PMC

Guzikevich-Guerstein  G., Shakked  Z.  A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nat. Struct. Biol.  1996; 3:32–37. PubMed

McGeehan  J.E., Streeter  S.D., Thresh  S.-J., Ball  N., Ravelli  R.B.G., Kneale  G.G.  Structural analysis of the genetic switch that regulates the expression of restriction-modification genes. Nucleic Acids Res.  2008; 36:4778–4787. PubMed PMC

Schneider  B., Božíková  P., Čech  P., Svozil  D., Černý  J.  A DNA structural alphabet distinguishes structural features of DNA bound to regulatory proteins and in the nucleosome core particle. Genes (Basel). 2017; 8:278. PubMed PMC

Philips  S.J., Canalizo-Hernandez  M., Yildirim  I., Schatz  G.C., Mondragón  A., O’Halloran  T.V.  Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science. 2015; 349:877–881. PubMed PMC

Albanesi  D., Reh  G., Guerin  M.E., Schaeffer  F., Debarbouille  M., Buschiazzo  A., Schujman  G.E., de Mendoza  D., Alzari  P.M.  Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. PLoS Pathog.  2013; 9:e1003108. PubMed PMC

Zorrilla  S., Doan  T., Alfonso  C., Margeat  E., Ortega  A., Rivas  G., Aymerich  S., Royer  C.A., Declerck  N.  Inducer-modulated cooperative binding of the Tetrameric CggR repressor to operator DNA. Biophys. J.  2007; 92:3215–3227. PubMed PMC

Chubukov  V., Uhr  M., Le Chat  L., Kleijn  R.J., Jules  M., Link  H., Aymerich  S., Stelling  J., Sauer  U.  Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol.  2013; 9:709. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...