Structure and function of bacterial transcription regulators of the SorC family
Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
39223991
PubMed Central
PMC11810097
DOI
10.1080/21541264.2024.2387895
Knihovny.cz E-resources
- Keywords
- SorC family, bacterial transcription regulation, carbohydrate metabolism, quorum sensing,
- MeSH
- Bacteria * metabolism genetics MeSH
- Bacterial Proteins * metabolism chemistry genetics MeSH
- Quorum Sensing MeSH
- Gene Expression Regulation, Bacterial MeSH
- Transcription Factors * metabolism chemistry genetics MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins * MeSH
- Transcription Factors * MeSH
The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.
See more in PubMed
Browning DF, Busby SJ.. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004;2(1):57–65. doi: 10.1038/nrmicro787 PubMed DOI
Browning DF, Busby SJW. Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol. 2016;14(10):638–650. doi: 10.1038/nrmicro.2016.103 PubMed DOI
Rocha EPC. The organization of the bacterial genome. Annu Rev Genet. 2008;42(1):211–233. doi: 10.1146/annurev.genet.42.110807.091653 PubMed DOI
Martınez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol. 2003;6(5):482–489. doi: 10.1016/j.mib.2003.09.002 PubMed DOI
Wöhrl BM, Wehmeier UF, Lengeler JW. Positive and negative regulation of expression of the L-sorbose (sor) operon by SorC in Klebsiella pneumoniae. Mol Gen Genet. 1990;224(2):193–200. doi: 10.1007/BF00271552 PubMed DOI
Wu M, Tao Y, Liu X, et al. Structural basis for phosphorylated autoinducer-2 modulation of the oligomerization state of the global transcription regulator LsrR from Escherichia coli. J Biol Chem. 2013;288(22):15878–15887. doi: 10.1074/jbc.M112.417634 PubMed DOI PMC
Martin MG, Magni C, de Mendoza D, et al. CitI, a transcription Factor involved in regulation of citrate metabolism in lactic acid bacteria. J Bacteriol. 2005;187(15):5146–5155. doi: 10.1128/JB.187.15.5146-5155.2005 PubMed DOI PMC
de Sanctis D, Rêgo AT, Marçal D, et al. Overexpression, purification and crystallization of the tetrameric form of SorC sorbitol operon regulator. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64(1):22–24. doi: 10.1107/S1744309107060897 PubMed DOI PMC
Ludwig H, Homuth G, Schmalisch M, et al. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol. 2001;41(2):409–422. doi: 10.1046/j.1365-2958.2001.02523.x PubMed DOI
Saxild HH, Andersen LN, Hammer K. Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol. 1996;178(2):424–434. doi: 10.1128/jb.178.2.424-434.1996 PubMed DOI PMC
Taga ME, Semmelhack JL, Bassler BL. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol. 2001;42(3):777–793. doi: 10.1046/j.1365-2958.2001.02669.x PubMed DOI
Xavier KB, Bassler BL. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol. 2005;187(1):238–248. doi: 10.1128/JB.187.1.238-248.2005 PubMed DOI PMC
Řezáčová P, Kožíšek M, Moy SF, et al. Crystal structures of the effector-binding domain of repressor central glycolytic gene regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Mol Microbiol. 2008;69(4):895–910. doi: 10.1111/j.1365-2958.2008.06318.x PubMed DOI PMC
Škerlová J, Fábry M, Hubálek M, et al. Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis. FEBS J. 2014;281(18):4280–4292. doi: 10.1111/febs.12856 PubMed DOI
Ha JH, Eo Y, Grishaev A, et al. Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. J Am Chem Soc. 2013;135(41):15526–15535. doi: 10.1021/ja407068v PubMed DOI PMC
McDowall J, Hunter S. InterPro protein classification. Methods Bol Biol. 2011;694:37–47. doi: 10.1007/978-1-60761-977-2_3 PubMed DOI
Aravind L, Anantharaman V, Balaji S, et al. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev. 2005;29(2):231–262. doi: 10.1016/j.femsre.2004.12.008 PubMed DOI
Šoltysová M, Sieglová I, Fábry M, et al. Structural insight into DNA recognition by bacterial transcriptional regulators of the SorC/DeoR family. Acta Crystallogr D Struct Biol. 2021;77(11):1411–1424. doi: 10.1107/S2059798321009633 PubMed DOI
Luo Y, Pfuetzner RA, Mosimann S, et al. Crystal structure of LexA. Cell. 2001;106(5):585–594. doi: 10.1016/S0092-8674(01)00479-2 PubMed DOI
Zorrilla S, Chaix D, Ortega A, et al. Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the central glycolytic genes repressor (CggR). Biochemistry. 2007;46(51):14996–15008. doi: 10.1021/bi701805e PubMed DOI
Zeng X, Saxild HH, Switzer RL. Purification and characterization of the DeoR repressor of Bacillus subtilis. J Bacteriol. 2000;182(7):1916–1922. doi: 10.1128/JB.182.7.1916-1922.2000 PubMed DOI PMC
Ha J-H, Eo Y, Grishaev A, et al. Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. J Am Chem Soc. 2013;135(41):15526–15535. doi: 10.1021/ja407068v PubMed DOI PMC
de Sanctis D, McVey CE, Enguita FJ, et al. Crystal structure of the full-length sorbitol operon regulator SorC from Klebsiella pneumoniae: structural evidence for a novel transcriptional regulation mechanism. J Mol Biol. 2009;387(3):759–770. doi: 10.1016/j.jmb.2009.02.017 PubMed DOI
Šoltysová M, Škerlová J, Pachl P, et al. Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function. Nucleic Acids Res. 2024;52(12):7305–7320. doi: 10.1093/nar/gkae434 PubMed DOI PMC
Doan T, Aymerich S. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol Microbiol. 2003;47(6):1709–1721. doi: 10.1046/j.1365-2958.2003.03404.x PubMed DOI
Zorrilla S, Doan T, Alfonso C, et al. Inducer-modulated cooperative binding of the tetrameric CggR repressor to Operator DNA. Biophys J. 2007;92(9):3215–3227. doi: 10.1529/biophysj.106.095109 PubMed DOI PMC
Chaix D, Ferguson ML, Atmanene C, et al. Physical basis of the inducer-dependent cooperativity of the central glycolytic genes Repressor/DNA complex. Nucleic Acids Res. 2010;38(17):5944–5957. doi: 10.1093/nar/gkq334 PubMed DOI PMC
Zeng X, Saxild HH. Identification and characterization of a DeoR-specific Operator sequence essential for induction of PubMed DOI PMC
Li J, Attila C, Wang L, et al. Quorum sensing in PubMed DOI PMC
Xue T, Zhao L, Sun H, et al. LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res. 2009;19(11):1258–1268. doi: 10.1038/cr.2009.91 PubMed DOI
Taga ME, Miller ST, Bassler BL. Lsr-mediated transport and processing of AI-2 in salmonella typhimurium. Mol Microbiol. 2003;50(4):1411–1427. doi: 10.1046/j.1365-2958.2003.03781.x PubMed DOI
Wöhrl BM, Lengeler JW. Cloning and physical mapping of the sor genes for L-sorbose transport and metabolism from Klebsiella pneumoniae. Mol Microbiol. 1990;4(9):1557–1565. doi: 10.1111/j.1365-2958.1990.tb02067.x PubMed DOI
Wehmeier UF, Lengeler JW. Sequence of the sor-operon for l-sorbose utilization from Klebsiella pneumoniae KAY2026. Biochim Biophys Acta (BBA) - Protein Struct Mol Enzymol. 1994;1208(2):348–351. doi: 10.1016/0167-4838(94)90124-4 PubMed DOI
Sangari FJ, Agüero J, Garcı ALJM. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiol (Read). 2000;146(2):487–495. doi: 10.1099/00221287-146-2-487 PubMed DOI
Qiu X, Xu P, Zhao X, et al. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab Eng. 2020;60:66–76. doi: 10.1016/j.ymben.2020.03.006 PubMed DOI
Rodríguez MC, Viadas C, Seoane A, et al. Evaluation of the effects of erythritol on gene expression in Brucella abortus. PLOS ONE. 2012;7(12):e50876. doi: 10.1371/journal.pone.0050876 PubMed DOI PMC
Fookes M, Yu J, De Majumdar S, et al. Genome sequence of Klebsiella pneumoniae Ecl8, a reference strain for targeted genetic manipulation. Genome Announc. 2013;1(1):1. doi: 10.1128/genomeA.00027-12 PubMed DOI PMC
Hartley BS. The structure and control of the Pentitol Operons. In: Robert PM, editors. Microorganisms as Model systems for studying evolution. Boston (MA): Springer US; 1984. p. 55–107.
Heuel H, Shakeri-Garakani A, Turgut S, et al. Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae. Microbiol (N Y). 1998;144(6):1631–1639. doi: 10.1099/00221287-144-6-1631 PubMed DOI
Bekal-Si Ali S, Divies C, Prevost H. Genetic organization of the citCDEF locus and identification of mae and clyR genes from Leuconostoc mesenteroides. J Bacteriol. 1999;181(14):4411–4416. doi: 10.1128/JB.181.14.4411-4416.1999 PubMed DOI PMC
Jin Q, Yuan Z, Xu J, et al. Genome sequence of shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res. 2002;30(20):4432–4441. doi: 10.1093/nar/gkf566 PubMed DOI PMC
Kim Y, Evdokimova E, Kudritska M, et al. Crystal structure of probable sor operon regulator from Shigella flexneri. 2008. doi: 10.2210/pdb3EFB/pdb DOI
Ruby EG, Urbanowski M, Campbell J, et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A. 2005;102(8):3004–3009. doi: 10.1073/pnas.0409900102 PubMed DOI PMC
Kim Y, Marshall N, Bearden J, et al. Crystal structure of putative sugar-binding domain of transcriptional repressor from Vibrio fischeri. 2009. doi: 10.2210/pdb3KV1/pdb DOI
Mongodin EF, Shapir N, Daugherty SC, et al. Secrets of soil survival revealed by the genome sequence of arthrobacter aurescens TC1. PLOS Genet. 2006;2(12):e214. doi: 10.1371/journal.pgen.0020214 PubMed DOI PMC
Tan K, Zhang R, Bigelow L, et al. The crystal structure of a domain of a possible sugar-binding transcriptional regulator from arthrobacter aurescens TC1. 2010. doi: 10.2210/pdb3NZE/pdb DOI
Buell CR, Joardar V, Lindeberg M, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 2003;100(18):10181–10186. doi: 10.1073/pnas.1731982100 PubMed DOI PMC
Cuff ME, Duggan E, Clancy S, et al. Putative sugar-binding domain of transcriptional regulator DeoR from Pseudomonas syringae pv. 2007. Tomato. doi: 10.2210/pdb2R5F/pdb DOI
Glaser P, Frangeul L, Buchrieser C, et al. Comparative genomics of listeria species. Science. 2001;294(5543):849–852. doi: 10.1126/science.1063447 PubMed DOI
Osipiuk J, Wu R, Clancy S, et al. DeoR family transcriptional regulator from listeria monocytogenes. 2014. doi: 10.2210/pdb4R9N/pdb DOI
Tettelin H, Nelson KE, Paulsen IT, et al. Complete genome sequence of a virulent isolate of streptococcus pneumoniae. Science. 2001;293(5529):498–506. doi: 10.1126/science.1061217 PubMed DOI
Tan K, Duggan E, Clancy S, et al. Structural genomics, the crystal structure of a transcriptional regulator from streptococcus pneumoniae TIGR4. 2006. doi: 10.2210/pdb2GNP/pdb DOI
Purves J, Cockayne A, Moody PCE, et al. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues PubMed DOI PMC
Deng X, Liang H, Ulanovskaya OA, et al. Steady-state hydrogen peroxide induces glycolysis in staphylococcus aureus and Pseudomonas aeruginosa. J Bacteriol. 2014;196(14):2499–2513. doi: 10.1128/JB.01538-14 PubMed DOI PMC
Paulsen IT, Banerjei L, Myers GSA, et al. Role of Mobile DNA in the evolution of vancomycin-resistant PubMed DOI
Zhang R, Zhou M, Bargassa M, et al. The crystal structure of the putative SorC family transcriptional regulator from Enterococcus faecalis. 2007. doi: 10.2210/pdb2O0M/pdb DOI
Medvedev KE, Kinch LN, Dustin Schaeffer R, et al. A fifth of the protein world: rossmann-like proteins as an evolutionarily successful structural unit. J Mol Biol. 2021;433(4):166788. doi: 10.1016/j.jmb.2020.166788 PubMed DOI PMC
Fox NK, Brenner SE, Chandonia J-M. Scope: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res. 2013;42(D1):D304–D309. doi: 10.1093/nar/gkt1240 PubMed DOI PMC
Cheng H, Schaeffer RD, Liao Y, et al. ECOD: an evolutionary classification of protein domains. PLOS Comput Biol. 2014;10(12):e1003926. doi: 10.1371/journal.pcbi.1003926 PubMed DOI PMC
Anantharaman V, Aravind L. Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase. J Mol Biol. 2006;356(3):823–842. doi: 10.1016/j.jmb.2005.11.031 PubMed DOI
Aravind L, Mazumder R, Vasudevan S, et al. Trends in protein evolution inferred from sequence and structure analysis. Curr Opin Struct Biol. 2002;12(3):392–399. doi: 10.1016/S0959-440X(02)00334-2 PubMed DOI
Vincent F, Davies GJ, Brannigan JA. Structure and kinetics of a monomeric glucosamine 6-phosphate deaminase: missing link of the NagB superfamily? J Biol Chem. 2005;280(20):19649–19655. doi: 10.1074/jbc.M502131200 PubMed DOI
Chipman DM, Shaanan B. The ACT domain family. Curr Opin Struct Biol. 2001;11(6):694–700. doi: 10.1016/S0959-440X(01)00272-X PubMed DOI
Bellamacina CR. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. The FASEB J. 1996;10(11):1257–1269. doi: 10.1096/fasebj.10.11.8836039 PubMed DOI
John RA. Pyridoxal phosphate-dependent enzymes. Biochim Biophys Acta. 1995;1248(2):81–96. doi: 10.1016/0167-4838(95)00025-P PubMed DOI
Huynh N, Aye A, Li Y, et al. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida. Biochemistry. 2013;52(47):8570–8579. doi: 10.1021/bi4011754 PubMed DOI PMC
Heine A, DeSantis G, Luz JG, et al. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science. 2001;294(5541):369–374. doi: 10.1126/science.1063601 PubMed DOI
Allard J, Grochulski P, Sygusch J. Covalent intermediate trapped in 2-keto-3-deoxy-6- phosphogluconate (KDPG) aldolase structure at 1.95-A resolution. Proc Natl Acad Sci U S A. 2001;98(7):3679–3684. doi: 10.1073/pnas.071380898 PubMed DOI PMC
Lorentzen E, Siebers B, Hensel R, et al. Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: structural analysis of reaction intermediates. Biochemistry. 2005;44(11):4222–4229. doi: 10.1021/bi048192o PubMed DOI
Rudiño-Piñera E, Morales-Arrieta S, Rojas-Trejo SP, et al. Structural flexibility, an essential component of the allosteric activation in PubMed DOI
Ishikawa K, Matsui I, Payan F, et al. A hyperthermostable D-Ribose-5-phosphate isomerase from pyrococcus horikoshii characterization and three-dimensional structure. Structure. 2002;10(6):877–886. doi: 10.1016/S0969-2126(02)00779-7 PubMed DOI
Soltysová M, Škerlová J, Pachl P, et al. Structural studies of bacterial transcriptional repressors of the SorC family Nucleic Acids Res. 2024;52(12):7305–7320. doi: 10.1093/nar/gkae434 PubMed DOI PMC
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(W1):W320–W324. doi: 10.1093/nar/gku316 PubMed DOI PMC
Pérez-Rueda E, Collado-Vides J. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria. J Mol Evol. 2001;53(3):172–179. doi: 10.1007/s002390010207 PubMed DOI
Huffman JL, Brennan RG. Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol. 2002;12(1):98–106. doi: 10.1016/S0959-440X(02)00295-6 PubMed DOI
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiol (N Y). 2008;154(12):3609–3623. doi: 10.1099/mic.0.2008/022772-0 PubMed DOI
Will WR, Fang FC. The evolution of MarR family transcription factors as counter-silencers in regulatory networks. Curr Opin Microbiol. 2020;55:1–8. doi: 10.1016/j.mib.2020.01.002 PubMed DOI PMC
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. In: PubMed PMC
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI
Thaw P, Sedelnikova SE, Muranova T, et al. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res. 2006;34(5):1439–1449. doi: 10.1093/nar/gkl009 PubMed DOI PMC
Martin M, Magni C, Lopez P, et al. Transcriptional control of the citrate-inducible PubMed DOI PMC
Mahr R, Frunzke J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol. 2016;100(1):79–90. doi: 10.1007/s00253-015-7090-3 PubMed DOI PMC
Yu W, Xu X, Jin K, et al. Genetically encoded biosensors for microbial synthetic biology: from conceptual frameworks to practical applications. Biotechnol Adv. 2023;62:108077. doi: 10.1016/j.biotechadv.2022.108077 PubMed DOI
Liu C, Yu H, Zhang B, et al. Engineering whole-cell microbial biosensors: design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnol Adv. 2022;60:108019. doi: 10.1016/j.biotechadv.2022.108019 PubMed DOI
Qian L, Durairaj S, Prins S, et al. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron. 2021;175:112836. doi: 10.1016/j.bios.2020.112836 PubMed DOI
Ding N, Zhou S, Deng Y. Transcription-factor-based biosensor engineering for applications in synthetic biology. ACS Synth Biol. 2021;10(5):911–922. doi: 10.1021/acssynbio.0c00252 PubMed DOI
Regnat K, Mach RL, Mach-Aigner AR. Erythritol as sweetener—wherefrom and whereto? Appl Microbiol Biotechnol. 2018;102(2):587–595. doi: 10.1007/s00253-017-8654-1 PubMed DOI PMC
Dai L, Tai C, Shen Y, et al. Biosynthesis of 1,4-butanediol from erythritol using whole-cell catalysis. Biocatal Biotransform. 2019;37(2):92–96. doi: 10.1080/10242422.2018.1465414 DOI
Tshibalonza NN, Gérardy R, Alsafra Z, et al. A versatile biobased continuous flow strategy for the production of 3-butene-1,2-diol and vinyl ethylene carbonate from erythritol. Green Chem. 2018;20(22):5147–5157. doi: 10.1039/C8GC02468E DOI
da Silva LV, Coelho MAZ, Amaral PFF, et al. A novel osmotic pressure strategy to improve erythritol production by yarrowia lipolytica from glycerol. Bioprocess Biosyst Eng. 2018;41(12):1883–1886. doi: 10.1007/s00449-018-2001-5 PubMed DOI
Nielsen J. It is all about MetabolicFluxes. J Bacteriol. 2003;185(24):7031–7035. doi: 10.1128/JB.185.24.7031-7035.2003 PubMed DOI PMC
Veeramani B, Bader JS. Metabolic flux correlations, genetic interactions, and disease. J Comput Biol. 2009;16(2):291–302. doi: 10.1089/cmb.2008.14TT PubMed DOI PMC
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. doi: 10.1016/j.cmet.2015.12.006 PubMed DOI PMC
Gupta A, Reizman IMB, Reisch CR, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35(3):273–279. doi: 10.1038/nbt.3796 PubMed DOI PMC
Monteiro F, Hubmann G, Takhaveev V, et al. Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol Syst Biol. 2019;15(12). doi: 10.15252/msb.20199071 PubMed DOI PMC
Litsios A, Ortega ÁD, Wit EC, et al. Metabolic-flux dependent regulation of microbial physiology. Curr Opin Microbiol. 2018;42:71–78. doi: 10.1016/j.mib.2017.10.029 PubMed DOI
Fendt S-M, Bell EL, Keibler MA, et al. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat Commun. 2013;4(1):2236. doi: 10.1038/ncomms3236 PubMed DOI PMC
Ge C, Sheng H, Chen X, et al. Quorum sensing system used as a tool in metabolic engineering. Biotechnol J. 2020;15(6):1900360. doi: 10.1002/biot.201900360 PubMed DOI
Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–199. doi: 10.1146/annurev.micro.55.1.165 PubMed DOI
Passos da Silva D, Schofield M, Parsek M, et al. An update on the sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens. 2017;6(4):51. doi: 10.3390/pathogens6040051 PubMed DOI PMC
Sun S, Zhang H, Lu S, et al. The metabolic flux regulation of Klebsiella pneumoniae based on quorum sensing system. Sci Rep. 2016;6(1):38725. doi: 10.1038/srep38725 PubMed DOI PMC
Tripathi S, Purchase D, Govarthanan M, et al. Regulatory and innovative mechanisms of bacterial quorum sensing–mediated pathogenicity: a review. Environ Monit Assess. 2023;195(1):75. doi: 10.1007/s10661-022-10564-0 PubMed DOI
Schaefer AL, Hanzelka BL, Eberhard A, et al. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol. 1996;178(10):2897–2901. doi: 10.1128/jb.178.10.2897-2901.1996 PubMed DOI PMC
Xu P. Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol. 2018;53:12–19. doi: 10.1016/j.copbio.2017.10.009 PubMed DOI
Stephens K, Bentley WE. Quorum sensing from two engineers’ perspectives. Isr J Chem. 2023;63(5–6). doi: 10.1002/ijch.202200083 DOI
Ge C, Yu Z, Sheng H, et al. Redesigning regulatory components of quorum-sensing system for diverse metabolic control. Nat Commun. 2022;13(1):2182. doi: 10.1038/s41467-022-29933-x PubMed DOI PMC
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013;37(2):156–181. doi: 10.1111/j.1574-6976.2012.00345.x PubMed DOI
Surette MG, Miller MB, Bassler BL. Quorum sensing in PubMed PMC
Zhu J, Patel R, Pei D. Catalytic mechanism of S -Ribosylhomocysteinase (LuxS): stereochemical course and kinetic isotope effect of proton transfer reactions. Biochemistry. 2004;43(31):10166–10172. doi: 10.1021/bi0491088 PubMed DOI
Pereira CS, Santos AJM, Bejerano-Sagie M, et al. Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Mol Microbiol. 2012;84(1):93–104. doi: 10.1111/j.1365-2958.2012.08010.x PubMed DOI
Wang L, Hashimoto Y, Tsao C-Y, et al. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in PubMed DOI PMC
Tsao C-Y, Hooshangi S, Wu H-C, et al. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab Eng. 2010;12(3):291–297. doi: 10.1016/j.ymben.2010.01.002 PubMed DOI
WHO . WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
Roncarati D, Scarlato V, Vannini A. Targeting of regulators as a promising approach in the search for novel antimicrobial agents. Microorganisms. 2022;10(1):185. doi: 10.3390/microorganisms10010185 PubMed DOI PMC
González A, Fillat MF, Lanas Á. Transcriptional regulators: valuable targets for novel antibacterial strategies. Future Med Chem. 2018;10(5):541–560. doi: 10.4155/fmc-2017-0181 PubMed DOI
Wang T, Sun W, Fan L, et al. An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs prediction of novel regulators in virulence. Elife. 2021;10. doi: 10.7554/eLife.61885 PubMed DOI PMC
Shao X, Yao C, Ding Y, et al. The transcriptional regulators of virulence for Pseudomonas aeruginosa: therapeutic opportunity and preventive potential of its clinical infections. Genes Dis. 2022;10(5):2049–2063. doi: 10.1016/j.gendis.2022.09.009 PubMed DOI PMC
Shakhnovich EA, Hung DT, Pierson E, et al. Virstatin inhibits dimerization of the transcriptional activator ToxT. In: PubMed PMC
Gotoh Y, Doi A, Furuta E, et al. Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot (Tokyo). 2010;63(3):127–134. doi: 10.1038/ja.2010.4 PubMed DOI
Tang YT, Gao R, Havranek JJ, et al. Inhibition of bacterial virulence: Drug‐Like molecules targeting the PubMed DOI PMC
Ho Y-H, Sung T-C, Chen C-S. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cellular Proteomics. 2012;11(4):M111.014720. doi: 10.1074/mcp.M111.014720 PubMed DOI PMC
Mathieu S, Cissé C, Vitale S, et al. From peptide aptamers to inhibitors of FUR, bacterial transcriptional regulator of iron homeostasis and virulence. ACS Chem Biol. 2016;11(9):2519–2528. doi: 10.1021/acschembio.6b00360 PubMed DOI
Koppolu V, Osaka I, Skredenske JM, et al. Small-molecule inhibitor of the Shigella flexneri Master virulence regulator VirF. Infect Immun. 2013;81(11):4220–4231. doi: 10.1128/IAI.00919-13 PubMed DOI PMC
Fan Q, Zuo J, Wang H, et al. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv. 2022;59:107965. doi: 10.1016/j.biotechadv.2022.107965 PubMed DOI
LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77(1):73–111. doi: 10.1128/MMBR.00046-12 PubMed DOI PMC
Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov. 2013;8(1):68–83. doi: 10.2174/1574891X11308010012 PubMed DOI
Haque S, Ahmad F, Dar SA, et al. Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog. 2018;121:293–302. doi: 10.1016/j.micpath.2018.05.046 PubMed DOI
Roy V, Adams BL, Bentley WE. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol. 2011;49(2):113–123. doi: 10.1016/j.enzmictec.2011.06.001 PubMed DOI
Sharma G, Sharma S, Sharma P, et al. PubMed DOI
Byrd CM, Bentley WE. Quieting cross talk – the quorum sensing regulator LsrR as a possible target for fighting bacterial infections. Cell Res. 2009;19(11):1229–1230. doi: 10.1038/cr.2009.122 PubMed DOI
Choi J, Shin D, Kim M, et al. LsrR-mediated quorum sensing controls invasiveness of salmonella typhimurium by regulating SPI-1 and flagella genes. PLOS ONE. 2012;7(5):e37059. doi: 10.1371/journal.pone.0037059 PubMed DOI PMC
Yu L, Li W, Li Q, et al. Role of LsrR in the regulation of antibiotic sensitivity in avian pathogenic Escherichia coli. Poult Sci. 2020;99(7):3675–3687. doi: 10.1016/j.psj.2020.03.064 PubMed DOI PMC
Roy V, Smith JAI, Wang J, et al. Synthetic analogs Tailor native AI-2 signaling across bacterial species. J Am Chem Soc. 2010;132(32):11141–11150. doi: 10.1021/ja102587w PubMed DOI
Roy V, Meyer MT, Smith JAI, et al. AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol. 2013;97(6):2627–2638. doi: 10.1007/s00253-012-4404-6 PubMed DOI
Hoffman JA, Badger JL, Zhang Y, et al. Escherichia coli K1 pur a and sor C are preferentially expressed upon association with human brain microvascular endothelial cells. Microb Pathog. 2001;31(2):69–79. doi: 10.1006/mpat.2001.0451 PubMed DOI