A DNA structural alphabet provides new insight into DNA flexibility
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 86652036
Akademie Věd České Republiky
BIOCEV CZ.1.05/1.1.00/02.0109
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001777
European Regional Development Fund
LM2015047
Ministerstvo Školství, Mládeǽe a Tělovýchovy
PubMed
29372899
PubMed Central
PMC5786007
DOI
10.1107/s2059798318000050
PII: S2059798318000050
Knihovny.cz E-zdroje
- Klíčová slova
- DNA modelling, DNA structure, NMR structure, X-ray structure, bioinformatics,
- MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny * MeSH
- molekulární modely * MeSH
- počítačová grafika MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
DNA is a structurally plastic molecule, and its biological function is enabled by adaptation to its binding partners. To identify the DNA structural polymorphisms that are possible in such adaptations, the dinucleotide structures of 60 000 DNA steps from sequentially nonredundant crystal structures were classified and an automated protocol assigning 44 distinct structural (conformational) classes called NtC (for Nucleotide Conformers) was developed. To further facilitate understanding of the DNA structure, the NtC were assembled into the DNA structural alphabet CANA (Conformational Alphabet of Nucleic Acids) and the projection of CANA onto the graphical representation of the molecular structure was proposed. The NtC classification was used to define a validation score called confal, which quantifies the conformity between an analyzed structure and the geometries of NtC. NtC and CANA assignment were applied to analyze the structural properties of typical DNA structures such as Dickerson-Drew dodecamers, guanine quadruplexes and structural models based on fibre diffraction. NtC, CANA and confal assignment, which is accessible at the website https://dnatco.org, allows the quantitative assessment and validation of DNA structures and their subsequent analysis by means of pseudo-sequence alignment. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Acta_Cryst_D:2.
Zobrazit více v PubMed
Adhireksan, Z., Davey, G. E., Campomanes, P., Groessl, M., Clavel, C. M., Yu, H., Nazarov, A. A., Yeo, C. H., Ang, W. H., Dröge, P., Rothlisberger, U., Dyson, P. J. & Davey, C. A. (2014). Nature Commun. 5, 3462. PubMed PMC
Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. (1989). Chem. Phys. Lett. 162, 165–169.
Ala-Kokko, L., Kontusaari, S., Baldwin, C. T., Kuivaniemi, H. & Prockop, D. J. (1989). Biochem. J. 260, 509–516. PubMed PMC
Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. PubMed
Aymami, J., Coll, M., van der Marel, G. A., van Boom, J. H., Wang, A. H.-J. & Rich, A. (1990). Proc. Natl Acad. Sci. USA, 87, 2526–2530. PubMed PMC
Aymami, J., Nunn, C. M. & Neidle, S. (1999). Nucleic Acids Res. 27, 2691–2698. PubMed PMC
Barabas, O., Ronning, D. R., Guynet, C., Hickman, A. B., Ton-Hoang, B., Chandler, M. & Dyda, F. (2008). Cell, 132, 208–220. PubMed PMC
Berman, H. M., Battistuz, T. et al. (2002). Acta Cryst. D58, 899–907. PubMed
Berman, H. M., Westbrook, J., Feng, Z., Iype, L., Schneider, B. & Zardecki, C. (2002). Acta Cryst. D58, 889–898. PubMed
Boer, R., Russi, S., Guasch, A., Lucas, M., Blanco, A. G., Perez-Luque, R., Coll, M. & de la Cruz, F. (2006). J. Mol. Biol. 358, 857–869. PubMed
Čech, P., Kukal, J., Černý, J., Schneider, B. & Svozil, D. (2013). BMC Bioinformatics, 14, 205. PubMed PMC
Černý, J., Božíková, P. & Schneider, B. (2016). Nucleic Acids Res. 44, W284–W287. PubMed PMC
Černý, J., Kabeláč, M. & Hobza, P. (2008). J. Am. Chem. Soc. 130, 16055–16059. PubMed
Chen, L., Cai, L., Zhang, X. & Rich, A. (1994). Biochemistry, 33, 13540–13546. PubMed
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC
Chen, Y. & Rice, P. A. (2003). J. Biol. Chem. 278, 24800–24807. PubMed
Chevalier, B. S., Kortemme, T., Chadsey, M. S., Baker, D., Monnat, R. J. & Stoddard, B. L. (2002). Mol. Cell, 10, 895–905. PubMed
Clark, G. R., Pytel, P. D., Squire, C. J. & Neidle, S. (2003). J. Am. Chem. Soc. 125, 4066–4067. PubMed
Collie, G. W., Promontorio, R., Hampel, S. M., Micco, M., Neidle, S. & Parkinson, G. N. (2012). J. Am. Chem. Soc. 134, 2723–2731. PubMed
Conner, B. N., Yoon, C., Dickerson, J. L. & Dickerson, R. E. (1984). J. Mol. Biol. 174, 663–695. PubMed
Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson, J. S. & Richardson, J. S. (2007). Nucleic Acids Res. 35, W375–W383. PubMed PMC
Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1981). Proc. Natl Acad. Sci. USA, 78, 2179–2183. PubMed PMC
Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Ho, P. S. (2000). Proc. Natl Acad. Sci. USA, 97, 3971–3976. PubMed PMC
Frederick, C. A., Williams, L. D., Ughetto, G., Van der Marel, G. A., Van Boom, J. H., Rich, A. & Wang, A. H.-J. (1990). Biochemistry, 29, 2538–2549. PubMed
Frouws, T. D., Duda, S. C. & Richmond, T. J. (2016). Proc. Natl Acad. Sci. USA, 113, 1214–1219. PubMed PMC
Galindo-Murillo, R., Robertson, J. C., Zgarbová, M., Šponer, J., Otyepka, M., Jurečka, P. & Cheatham, T. E. (2016). J. Chem. Theory Comput. 12, 4114–4127. PubMed PMC
Gao, Y.-G., Robinson, H., Wijsman, E. R., van der Marel, G. A., van Boom, J. H. & Wang, A. H.-J. (1997). J. Am. Chem. Soc. 119, 1496–1497.
Gehring, K., Leroy, J.-L. & Guéron, M. (1993). Nature (London), 363, 561–565. PubMed
Glas, A. F., Maul, M. J., Cryle, M., Barends, T. R., Schneider, S., Kaya, E., Schlichting, I. & Carell, T. (2009). Proc. Natl Acad. Sci. USA, 106, 11540–11545. PubMed PMC
Gleghorn, M. L., Davydova, E. K., Rothman-Denes, L. B. & Murakami, K. S. (2008). Mol. Cell, 32, 707–717. PubMed PMC
Goedecke, K., Pignot, M., Goody, R. S., Scheidig, A. J. & Weinhold, E. (2001). Nature Struct. Biol. 8, 121–125. PubMed
Haider, S., Parkinson, G. N. & Neidle, S. (2002). J. Mol. Biol. 320, 189–200. PubMed
Han, H. & Hurley, L. H. (2000). Trends Pharmacol. Sci. 21, 136–142. PubMed
Harper, A., Brannigan, J. A., Buck, M., Hewitt, L., Lewis, R. J., Moore, M. H. & Schneider, B. (1998). Acta Cryst. D54, 1273–1284. PubMed
Hays, F. A., Teegarden, A., Jones, Z. J. R., Harms, M., Raup, D., Watson, J., Cavaliere, E. & Ho, P. S. (2005). Proc. Natl Acad. Sci. USA, 102, 7157–7162. PubMed PMC
Howerton, S. B., Nagpal, A. & Dean Williams, L. (2003). Biopolymers, 69, 87–99. PubMed
Ivani, I. et al. (2016). Nature Methods, 13, 55–58. PubMed PMC
Johnson, S. J. & Beese, L. S. (2004). Cell, 116, 803–816. PubMed
Joosten, R. P., Womack, T., Vriend, G. & Bricogne, G. (2009). Acta Cryst. D65, 176–185. PubMed PMC
Jurečka, P., Černý, J., Hobza, P. & Salahub, D. R. (2007). J. Comput. Chem. 28, 555–569. PubMed
Kneale, G., Brown, T., Kennard, O. & Rabinovich, D. (1985). J. Mol. Biol. 186, 805–814. PubMed
Kollman, P., Keepers, J. W. & Weiner, P. (1982). Biopolymers, 21, 2345–2376.
Kondo, J., Yamada, T., Hirose, C., Okamoto, I., Tanaka, Y. & Ono, A. (2014). Angew. Chem. Int. Ed. 53, 2385–2388. PubMed
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. (2007). Bioinformatics, 23, 2947–2948. PubMed
Larsen, T. A., Kopka, M. L. & Dickerson, R. E. (1991). Biochemistry, 30, 4443–4449. PubMed
Levitt, M. (1992). J. Mol. Biol. 226, 507–533. PubMed
Liu, Y. & West, S. C. (2004). Nature Rev. Mol. Cell Biol. 5, 937–944. PubMed
Lu, X.-J. & Olson, W. K. (2008). Nature Protoc. 3, 1213–1227. PubMed PMC
McAuley-Hecht, K. E., Leonard, G. A., Gibson, N. J., Thomson, J. B., Watson, W. P., Hunter, W. N. & Brown, T. (1994). Biochemistry, 33, 10266–10270. PubMed
Mondragón, A. & Harrison, S. C. (1991). J. Mol. Biol. 219, 321–334. PubMed
Moore, M. H., Hunter, W. N., Langlois d’Estaintot, B. L. & Kennard, O. (1989). J. Mol. Biol. 206, 693–705. PubMed
Nicoludis, J. M., Miller, S. T., Jeffrey, P. D., Barrett, S. P., Rablen, P. R., Lawton, T. J. & Yatsunyk, L. A. (2012). J. Am. Chem. Soc. 134, 20446–20456. PubMed
Parkinson, G. N., Lee, M. P. & Neidle, S. (2002). Nature (London), 417, 876–880. PubMed
Patikoglou, G. A., Kim, J. L., Sun, L., Yang, S.-H., Kodadek, T. & Burley, S. K. (1999). Genes Dev. 13, 3217–3230. PubMed PMC
Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T. E. III, Laughton, C. A. & Orozco, M. (2007). Biophys. J. 92, 3817–3829. PubMed PMC
Salomon-Ferrer, R., Case, D. A. & Walker, R. C. (2013). WIREs Comput. Mol. Sci. 3, 198–210.
Schäfer, A., Huber, C. & Ahlrichs, R. (1994). J. Chem. Phys. 100, 5829–5835.
Schellenberg, M. J., Appel, C. D., Adhikari, S., Robertson, P. D., Ramsden, D. A. & Williams, R. S. (2012). Nature Struct. Mol. Biol. 19, 1363–1371. PubMed PMC
Schneider, B., Božíková, P., Čech, P., Svozil, D. & Černý, J. (2017). Genes (Basel), 8, 278. PubMed PMC
Silverman, A. P., Bu, W. M., Cohen, S. M. & Lippard, S. J. (2002). J. Biol. Chem. 277, 49743–49749. PubMed
Spingler, B., Whittington, D. A. & Lippard, S. J. (2001). Inorg. Chem. 40, 5596–5602. PubMed
Sriram, M., Van der Marel, G. A., Roelen, H. L. P. F., Van Boom, J. H. & Wang, A. H.-J. (1992). Biochemistry, 31, 11823–11834. PubMed
Sunami, T., Chatake, T. & Kono, H. (2017). Acta Cryst. D73, 600–608. PubMed PMC
Svozil, D., Kalina, J., Omelka, M. & Schneider, B. (2008). Nucleic Acids Res. 36, 3690–3706. PubMed PMC
Swan, M. K., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. (2009). J. Mol. Biol. 390, 699–709. PubMed PMC
Szulik, M. W., Pallan, P. S., Nocek, B., Voehler, M., Banerjee, S., Brooks, S., Joachimiak, A., Egli, M., Eichman, B. F. & Stone, M. P. (2015). Biochemistry, 54, 1294–1305. PubMed PMC
Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. (2003). Phys. Rev. Lett. 91, 146401. PubMed
Temperini, C., Messori, L., Orioli, P., Di Bugno, C., Animati, F. & Ughetto, G. (2003). Nucleic Acids Res. 31, 1464–1469. PubMed PMC
Thorpe, J. H., Gale, B. C., Teixeira, S. C. M. & Cardin, C. J. (2003). J. Mol. Biol. 327, 97–109. PubMed
Todd, A. K. & Neidle, S. (2011). Nucleic Acids Res. 39, 4917–4927. PubMed PMC
Unger, R., Harel, D., Wherland, S. & Sussman, J. L. (1989). Proteins, 5, 355–373. PubMed
Williams, R. S., Moncalian, G., Williams, J. S., Yamada, Y., Limbo, O., Shin, D. S., Groocock, L. M., Cahill, D., Hitomi, C., Guenther, G., Moiani, D., Carney, J. P., Russell, P. & Tainer, J. A. (2008). Cell, 135, 97–109. PubMed PMC
Wing, R. M., Pjura, P., Drew, H. R. & Dickerson, R. E. (1984). EMBO J. 3, 1201–1206. PubMed PMC
Xia, S., Wang, J. & Konigsberg, W. H. (2013). J. Am. Chem. Soc. 135, 193–202. PubMed PMC
Zgarbová, M., Šponer, J., Otyepka, M., Cheatham, T. E., Galindo-Murillo, R. & Jurečka, P. (2015). J. Chem. Theory Comput. 11, 5723–5736. PubMed
Conformation-based refinement of 18-mer DNA structures
Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks
Developing Community Resources for Nucleic Acid Structures
Structural variability of CG-rich DNA 18-mers accommodating double T-T mismatches
Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org
A unified dinucleotide alphabet describing both RNA and DNA structures