A DNA structural alphabet provides new insight into DNA flexibility

. 2018 Jan 01 ; 74 (Pt 1) : 52-64. [epub] 20180101

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29372899

Grantová podpora
RVO 86652036 Akademie Věd České Republiky
BIOCEV CZ.1.05/1.1.00/02.0109 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001777 European Regional Development Fund
LM2015047 Ministerstvo Školství, Mládeǽe a Tělovýchovy

DNA is a structurally plastic molecule, and its biological function is enabled by adaptation to its binding partners. To identify the DNA structural polymorphisms that are possible in such adaptations, the dinucleotide structures of 60 000 DNA steps from sequentially nonredundant crystal structures were classified and an automated protocol assigning 44 distinct structural (conformational) classes called NtC (for Nucleotide Conformers) was developed. To further facilitate understanding of the DNA structure, the NtC were assembled into the DNA structural alphabet CANA (Conformational Alphabet of Nucleic Acids) and the projection of CANA onto the graphical representation of the molecular structure was proposed. The NtC classification was used to define a validation score called confal, which quantifies the conformity between an analyzed structure and the geometries of NtC. NtC and CANA assignment were applied to analyze the structural properties of typical DNA structures such as Dickerson-Drew dodecamers, guanine quadruplexes and structural models based on fibre diffraction. NtC, CANA and confal assignment, which is accessible at the website https://dnatco.org, allows the quantitative assessment and validation of DNA structures and their subsequent analysis by means of pseudo-sequence alignment. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Acta_Cryst_D:2.

Zobrazit více v PubMed

Adhireksan, Z., Davey, G. E., Campomanes, P., Groessl, M., Clavel, C. M., Yu, H., Nazarov, A. A., Yeo, C. H., Ang, W. H., Dröge, P., Rothlisberger, U., Dyson, P. J. & Davey, C. A. (2014). Nature Commun. 5, 3462. PubMed PMC

Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. (1989). Chem. Phys. Lett. 162, 165–169.

Ala-Kokko, L., Kontusaari, S., Baldwin, C. T., Kuivaniemi, H. & Prockop, D. J. (1989). Biochem. J. 260, 509–516. PubMed PMC

Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. PubMed

Aymami, J., Coll, M., van der Marel, G. A., van Boom, J. H., Wang, A. H.-J. & Rich, A. (1990). Proc. Natl Acad. Sci. USA, 87, 2526–2530. PubMed PMC

Aymami, J., Nunn, C. M. & Neidle, S. (1999). Nucleic Acids Res. 27, 2691–2698. PubMed PMC

Barabas, O., Ronning, D. R., Guynet, C., Hickman, A. B., Ton-Hoang, B., Chandler, M. & Dyda, F. (2008). Cell, 132, 208–220. PubMed PMC

Berman, H. M., Battistuz, T. et al. (2002). Acta Cryst. D58, 899–907. PubMed

Berman, H. M., Westbrook, J., Feng, Z., Iype, L., Schneider, B. & Zardecki, C. (2002). Acta Cryst. D58, 889–898. PubMed

Boer, R., Russi, S., Guasch, A., Lucas, M., Blanco, A. G., Perez-Luque, R., Coll, M. & de la Cruz, F. (2006). J. Mol. Biol. 358, 857–869. PubMed

Čech, P., Kukal, J., Černý, J., Schneider, B. & Svozil, D. (2013). BMC Bioinformatics, 14, 205. PubMed PMC

Černý, J., Božíková, P. & Schneider, B. (2016). Nucleic Acids Res. 44, W284–W287. PubMed PMC

Černý, J., Kabeláč, M. & Hobza, P. (2008). J. Am. Chem. Soc. 130, 16055–16059. PubMed

Chen, L., Cai, L., Zhang, X. & Rich, A. (1994). Biochemistry, 33, 13540–13546. PubMed

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC

Chen, Y. & Rice, P. A. (2003). J. Biol. Chem. 278, 24800–24807. PubMed

Chevalier, B. S., Kortemme, T., Chadsey, M. S., Baker, D., Monnat, R. J. & Stoddard, B. L. (2002). Mol. Cell, 10, 895–905. PubMed

Clark, G. R., Pytel, P. D., Squire, C. J. & Neidle, S. (2003). J. Am. Chem. Soc. 125, 4066–4067. PubMed

Collie, G. W., Promontorio, R., Hampel, S. M., Micco, M., Neidle, S. & Parkinson, G. N. (2012). J. Am. Chem. Soc. 134, 2723–2731. PubMed

Conner, B. N., Yoon, C., Dickerson, J. L. & Dickerson, R. E. (1984). J. Mol. Biol. 174, 663–695. PubMed

Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson, J. S. & Richardson, J. S. (2007). Nucleic Acids Res. 35, W375–W383. PubMed PMC

Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1981). Proc. Natl Acad. Sci. USA, 78, 2179–2183. PubMed PMC

Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Ho, P. S. (2000). Proc. Natl Acad. Sci. USA, 97, 3971–3976. PubMed PMC

Frederick, C. A., Williams, L. D., Ughetto, G., Van der Marel, G. A., Van Boom, J. H., Rich, A. & Wang, A. H.-J. (1990). Biochemistry, 29, 2538–2549. PubMed

Frouws, T. D., Duda, S. C. & Richmond, T. J. (2016). Proc. Natl Acad. Sci. USA, 113, 1214–1219. PubMed PMC

Galindo-Murillo, R., Robertson, J. C., Zgarbová, M., Šponer, J., Otyepka, M., Jurečka, P. & Cheatham, T. E. (2016). J. Chem. Theory Comput. 12, 4114–4127. PubMed PMC

Gao, Y.-G., Robinson, H., Wijsman, E. R., van der Marel, G. A., van Boom, J. H. & Wang, A. H.-J. (1997). J. Am. Chem. Soc. 119, 1496–1497.

Gehring, K., Leroy, J.-L. & Guéron, M. (1993). Nature (London), 363, 561–565. PubMed

Glas, A. F., Maul, M. J., Cryle, M., Barends, T. R., Schneider, S., Kaya, E., Schlichting, I. & Carell, T. (2009). Proc. Natl Acad. Sci. USA, 106, 11540–11545. PubMed PMC

Gleghorn, M. L., Davydova, E. K., Rothman-Denes, L. B. & Murakami, K. S. (2008). Mol. Cell, 32, 707–717. PubMed PMC

Goedecke, K., Pignot, M., Goody, R. S., Scheidig, A. J. & Weinhold, E. (2001). Nature Struct. Biol. 8, 121–125. PubMed

Haider, S., Parkinson, G. N. & Neidle, S. (2002). J. Mol. Biol. 320, 189–200. PubMed

Han, H. & Hurley, L. H. (2000). Trends Pharmacol. Sci. 21, 136–142. PubMed

Harper, A., Brannigan, J. A., Buck, M., Hewitt, L., Lewis, R. J., Moore, M. H. & Schneider, B. (1998). Acta Cryst. D54, 1273–1284. PubMed

Hays, F. A., Teegarden, A., Jones, Z. J. R., Harms, M., Raup, D., Watson, J., Cavaliere, E. & Ho, P. S. (2005). Proc. Natl Acad. Sci. USA, 102, 7157–7162. PubMed PMC

Howerton, S. B., Nagpal, A. & Dean Williams, L. (2003). Biopolymers, 69, 87–99. PubMed

Ivani, I. et al. (2016). Nature Methods, 13, 55–58. PubMed PMC

Johnson, S. J. & Beese, L. S. (2004). Cell, 116, 803–816. PubMed

Joosten, R. P., Womack, T., Vriend, G. & Bricogne, G. (2009). Acta Cryst. D65, 176–185. PubMed PMC

Jurečka, P., Černý, J., Hobza, P. & Salahub, D. R. (2007). J. Comput. Chem. 28, 555–569. PubMed

Kneale, G., Brown, T., Kennard, O. & Rabinovich, D. (1985). J. Mol. Biol. 186, 805–814. PubMed

Kollman, P., Keepers, J. W. & Weiner, P. (1982). Biopolymers, 21, 2345–2376.

Kondo, J., Yamada, T., Hirose, C., Okamoto, I., Tanaka, Y. & Ono, A. (2014). Angew. Chem. Int. Ed. 53, 2385–2388. PubMed

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. (2007). Bioinformatics, 23, 2947–2948. PubMed

Larsen, T. A., Kopka, M. L. & Dickerson, R. E. (1991). Biochemistry, 30, 4443–4449. PubMed

Levitt, M. (1992). J. Mol. Biol. 226, 507–533. PubMed

Liu, Y. & West, S. C. (2004). Nature Rev. Mol. Cell Biol. 5, 937–944. PubMed

Lu, X.-J. & Olson, W. K. (2008). Nature Protoc. 3, 1213–1227. PubMed PMC

McAuley-Hecht, K. E., Leonard, G. A., Gibson, N. J., Thomson, J. B., Watson, W. P., Hunter, W. N. & Brown, T. (1994). Biochemistry, 33, 10266–10270. PubMed

Mondragón, A. & Harrison, S. C. (1991). J. Mol. Biol. 219, 321–334. PubMed

Moore, M. H., Hunter, W. N., Langlois d’Estaintot, B. L. & Kennard, O. (1989). J. Mol. Biol. 206, 693–705. PubMed

Nicoludis, J. M., Miller, S. T., Jeffrey, P. D., Barrett, S. P., Rablen, P. R., Lawton, T. J. & Yatsunyk, L. A. (2012). J. Am. Chem. Soc. 134, 20446–20456. PubMed

Parkinson, G. N., Lee, M. P. & Neidle, S. (2002). Nature (London), 417, 876–880. PubMed

Patikoglou, G. A., Kim, J. L., Sun, L., Yang, S.-H., Kodadek, T. & Burley, S. K. (1999). Genes Dev. 13, 3217–3230. PubMed PMC

Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T. E. III, Laughton, C. A. & Orozco, M. (2007). Biophys. J. 92, 3817–3829. PubMed PMC

Salomon-Ferrer, R., Case, D. A. & Walker, R. C. (2013). WIREs Comput. Mol. Sci. 3, 198–210.

Schäfer, A., Huber, C. & Ahlrichs, R. (1994). J. Chem. Phys. 100, 5829–5835.

Schellenberg, M. J., Appel, C. D., Adhikari, S., Robertson, P. D., Ramsden, D. A. & Williams, R. S. (2012). Nature Struct. Mol. Biol. 19, 1363–1371. PubMed PMC

Schneider, B., Božíková, P., Čech, P., Svozil, D. & Černý, J. (2017). Genes (Basel), 8, 278. PubMed PMC

Silverman, A. P., Bu, W. M., Cohen, S. M. & Lippard, S. J. (2002). J. Biol. Chem. 277, 49743–49749. PubMed

Spingler, B., Whittington, D. A. & Lippard, S. J. (2001). Inorg. Chem. 40, 5596–5602. PubMed

Sriram, M., Van der Marel, G. A., Roelen, H. L. P. F., Van Boom, J. H. & Wang, A. H.-J. (1992). Biochemistry, 31, 11823–11834. PubMed

Sunami, T., Chatake, T. & Kono, H. (2017). Acta Cryst. D73, 600–608. PubMed PMC

Svozil, D., Kalina, J., Omelka, M. & Schneider, B. (2008). Nucleic Acids Res. 36, 3690–3706. PubMed PMC

Swan, M. K., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. (2009). J. Mol. Biol. 390, 699–709. PubMed PMC

Szulik, M. W., Pallan, P. S., Nocek, B., Voehler, M., Banerjee, S., Brooks, S., Joachimiak, A., Egli, M., Eichman, B. F. & Stone, M. P. (2015). Biochemistry, 54, 1294–1305. PubMed PMC

Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. (2003). Phys. Rev. Lett. 91, 146401. PubMed

Temperini, C., Messori, L., Orioli, P., Di Bugno, C., Animati, F. & Ughetto, G. (2003). Nucleic Acids Res. 31, 1464–1469. PubMed PMC

Thorpe, J. H., Gale, B. C., Teixeira, S. C. M. & Cardin, C. J. (2003). J. Mol. Biol. 327, 97–109. PubMed

Todd, A. K. & Neidle, S. (2011). Nucleic Acids Res. 39, 4917–4927. PubMed PMC

Unger, R., Harel, D., Wherland, S. & Sussman, J. L. (1989). Proteins, 5, 355–373. PubMed

Williams, R. S., Moncalian, G., Williams, J. S., Yamada, Y., Limbo, O., Shin, D. S., Groocock, L. M., Cahill, D., Hitomi, C., Guenther, G., Moiani, D., Carney, J. P., Russell, P. & Tainer, J. A. (2008). Cell, 135, 97–109. PubMed PMC

Wing, R. M., Pjura, P., Drew, H. R. & Dickerson, R. E. (1984). EMBO J. 3, 1201–1206. PubMed PMC

Xia, S., Wang, J. & Konigsberg, W. H. (2013). J. Am. Chem. Soc. 135, 193–202. PubMed PMC

Zgarbová, M., Šponer, J., Otyepka, M., Cheatham, T. E., Galindo-Murillo, R. & Jurečka, P. (2015). J. Chem. Theory Comput. 11, 5723–5736. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Conformation-based refinement of 18-mer DNA structures

. 2023 Jul 01 ; 79 (Pt 7) : 655-665. [epub] 20230620

Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks

. 2022 Aug 01 ; 78 (Pt 8) : 1032-1045. [epub] 20220721

Developing Community Resources for Nucleic Acid Structures

. 2022 Apr 06 ; 12 (4) : . [epub] 20220406

Structural variability of CG-rich DNA 18-mers accommodating double T-T mismatches

. 2020 Dec 01 ; 76 (Pt 12) : 1233-1243. [epub] 20201124

Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org

. 2020 Sep 01 ; 76 (Pt 9) : 805-813. [epub] 20200817

A unified dinucleotide alphabet describing both RNA and DNA structures

. 2020 Jun 19 ; 48 (11) : 6367-6381.

A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo Community)

. 2020 ; 9 () : . [epub] 20200422

Enriched Conformational Sampling of DNA and Proteins with a Hybrid Hamiltonian Derived from the Protein Data Bank

. 2018 Oct 30 ; 19 (11) : . [epub] 20181030

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...