Developing Community Resources for Nucleic Acid Structures

. 2022 Apr 06 ; 12 (4) : . [epub] 20220406

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35455031

Grantová podpora
R01 GM085328 NIGMS NIH HHS - United States
RVO 86652036 Czech Academy of Sciences
LTAUSA18197 Ministry of Education, Youth, and Sports of the Czech Republic
R01 GM079429 NIH HHS - United States
R01 GM085238 NIH HHS - United States

In this review, we describe the creation of the Nucleic Acid Database (NDB) at Rutgers University and how it became a testbed for the current infrastructure of the RCSB Protein Data Bank. We describe some of the special features of the NDB and how it has been used to enable research. Plans for the next phase as the Nucleic Acid Knowledgebase (NAKB) are summarized.

Zobrazit více v PubMed

Watson J.D., Crick F.H.C. A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI

Franklin R.E., Gosling R.G. Molecular configuration in sodium thymonucleate. Nature. 1953;171:740–741. doi: 10.1038/171740a0. PubMed DOI

Sussman J.L., Seeman N.C., Kim S.-H., Berman H.M. The crystal structure of a naturally occurring dinucleotide phosphate uridylyl 3′,5′-adenosine phosphate. models for RNA chain folding. J. Mol. Biol. 1972;66:403–421. doi: 10.1016/0022-2836(72)90423-8. PubMed DOI

Seeman N.C., Rosenberg J.M., Suddath F.L., Kim J.J.P., Rich A. RNA double helical fragments at atomic resolution: I. The crystal and molecular structure of sodium adenylyl-3′-5′-uridine hexahydrate. J. Mol. Biol. 1976;104:109–144. doi: 10.1016/0022-2836(76)90005-X. PubMed DOI

Rosenberg J.M., Seeman N.C., Day R.O., Rich A. RNA double helical fragments at atomic resolution: II. The structure of sodium guanylyl-3′,5′-cytidine nonhydrate. J. Mol. Biol. 1976;104:145–167. doi: 10.1016/0022-2836(76)90006-1. PubMed DOI

Allen F.H., Bellard S., Brice M.D., Cartright B.A., Doubleday A., Higgs H., Hummelink T., Hummelink-Peters B.G., Kennard O., Motherwell W.D.S., et al. The Cambridge Crystallographic Data Centre: Computer-based search, retrieval, analysis and display of information. Acta Crystallogr. 1979;B35:2331–2339. doi: 10.1107/S0567740879009249. DOI

Robertus J.D., Ladner J.E., Finch J.T., Rhodes D., Brown R.S., Clark B.F.C., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974;250:546–551. doi: 10.1038/250546a0. PubMed DOI

Suddath F., Quigley G., McPherson A., Sneden D., Kim J., Kim S., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0 Ångstroms resolution. Nature. 1974;248:20–24. doi: 10.1038/248020a0. PubMed DOI

Quigley G.J., Seeman N.C., Wang A.H., Suddath F.L., Rich A. Yeast phenylalanine transfer RNA: Atomic coordinates and torsion angles. Nucleic Acids Res. 1975;2:2329–2341. doi: 10.1093/nar/2.12.2329. PubMed DOI PMC

Wang A.H.-J., Quigley G.J., Kolpak F.J., Crawford J.L., van Boom J.H., van der Marel G.A., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282:680–686. doi: 10.1038/282680a0. PubMed DOI

Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA. 1981;78:2179–2183. doi: 10.1073/pnas.78.4.2179. PubMed DOI PMC

Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.F., Jr., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977;112:535–542. doi: 10.1016/S0022-2836(77)80200-3. PubMed DOI

Breslauer K.J. A calorimetric determination of enthalpies and heat capacities of protonation. J. Chem. Thermodyn. 1979;11:527–530. doi: 10.1016/0021-9614(79)90090-9. DOI

Breslauer K.J. Methods for Obtaining Thermodynamic Data on Oligonucleotide Transitions. In: Hinz H., editor. Thermodynamic Data for Biochemistry and Biotechnology. Springer; New York, NY, USA: 1986. pp. 402–427.

Breslauer K.J. A thermodynamic perspective of DNA Bending. Curr. Biol. 1991;1:416–422. doi: 10.1016/0959-440X(91)90041-Q. DOI

Breslauer K.J. Extracting Thermodynamic Data From Equilibrium Melting Curves for Oligonucleotide Order-Disorder Transitions. In: Agrawal S., editor. Methods in Molecular Biology, Vol. 26: Protocols for Oligonucleotide Conjugates. Humana Press; Totowa, NJ, USA: 1994. pp. 347–372. Chapter 14. PubMed

Chalikian T.V., Breslauer K.J. Thermodynamic analysis of biomolecules: A volumetric approach. Curr. Opin. Struct. Biol. 1998;8:657–664. doi: 10.1016/S0959-440X(98)80159-0. PubMed DOI

Chalikian T.V., Volker J., Plum G.E., Breslauer K.J. A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA. 1999;96:7853–7858. doi: 10.1073/pnas.96.14.7853. PubMed DOI PMC

Klump H.H., Volker J., Breslauer K.J. Energy mapping of the genetic code and genomic domains: Implications for code evolution and molecular Darwinism. Q. Rev. Biophys. 2020;53:e11. doi: 10.1017/S0033583520000098. PubMed DOI

Volker J., Klump H.H., Breslauer K.J. DNA metastability and biological regulation: Conformational dynamics of metastable omega-DNA bulge loops. J. Am. Chem. Soc. 2007;129:5272–5280. doi: 10.1021/ja070258q. PubMed DOI

Jones R. Preparation of protected deoxyribonucleosides. In: Gait M.J., editor. Oligonucleotide Synthesis, a Practical Approach. IRL Press; Washington, DC, USA: 1984. pp. 22–34.

Manning G. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 1978;11:179–246. doi: 10.1017/S0033583500002031. PubMed DOI

Volker J., Klump H.H., Manning G.S., Breslauer K.J. Counterion association with native and denatured nucleic acids: An experimental approach. J. Mol. Biol. 2001;310:1011–1025. doi: 10.1006/jmbi.2001.4841. PubMed DOI

Erie D., Sinha N., Olson W., Jones R., Breslauer K. A dumbbell-shaped, double-hairpin structure of DNA: A thermodynamic investigation. Biochemistry. 1987;26:7150–7159. doi: 10.1021/bi00396a042. PubMed DOI

Berman H.M., Olson W.K., Beveridge D.L., Westbrook J., Gelbin A., Demeny T., Hsieh S.H., Srinivasan A.R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 1992;63:751–759. doi: 10.1016/S0006-3495(92)81649-1. PubMed DOI PMC

Kitakami H., Tateno Y., Gojobori T. Toward unification of taxonomy databases in a distributed computer environment. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994;2:227–235. PubMed

Bilofsky H.S., Burks C., Fickett J.W., Goad W.B., Lewitter F.I., Rindone W.P., Swindell C.D., Tung C.S. The GenBank genetic sequence databank. Nucleic Acids Res. 1986;14:1861–1863. doi: 10.1093/nar/14.1.1. PubMed DOI PMC

Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., Wheeler D.L. GenBank. Nucleic Acids Res. 2000;28:15–18. doi: 10.1093/nar/28.1.15. PubMed DOI PMC

Parker M. Biological data access through Gopher. Trends Biochem. Sci. 1993;18:485–486. doi: 10.1016/S0968-0004(10)80001-5. PubMed DOI

Fitzgerald P.M.D., Westbrook J.D., Bourne P.E., McMahon B., Watenpaugh K.D., Berman H.M. 4.5 Macromolecular dictionary (mmCIF) In: Hall S.R., McMahon B., editors. International Tables for Crystallography G. Definition and Exchange of Crystallographic Data. Springer; Dordrecht, The Netherlands: 2005. pp. 295–443.

Clowney L., Jain S.C., Srinivasan A.R., Westbrook J., Olson W.K., Berman H.M. Geometric Parameters in Nucleic Acids: Nitrogenous Bases. J. Am. Chem. Soc. 1996;118:509–518. doi: 10.1021/ja952883d. DOI

Gelbin A., Schneider B., Clowney L., Hsieh S.-H., Olson W.K., Berman H.M. Geometric parameters in nucleic acids: Sugar and phosphate constituents. J. Am. Chem. Soc. 1996;118:519–528. doi: 10.1021/ja9528846. DOI

Parkinson G., Vojtechovsky J., Clowney L., Brunger A.T., Berman H.M. New parameters for the refinement of nucleic acid-containing structures. Pt 1Acta Cryst. D Biol. Cryst. 1996;52:57–64. doi: 10.1107/S0907444995011115. PubMed DOI

Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., Heinemann U., Lu X.J., Neidle S., Shakked Z., et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. doi: 10.1006/jmbi.2001.4987. PubMed DOI

Leontis N.B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. doi: 10.1017/S1355838201002515. PubMed DOI PMC

Schneider B., de la Cruz J., Feng Z., Chen L., Dutta S., Persikova I., Westbrook J., Yang H., Young J., Zardecki C., et al. The Nucleic Acid Database. In: Gu J., Bourne P.E., editors. Structural Bioinformatics. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2009. pp. 305–319.

Coimbatore Narayanan B., Westbrook J., Ghosh S., Petrov A.I., Sweeney B., Zirbel C.L., Leontis N.B., Berman H.M. The Nucleic Acid Database: New features and capabilities. Nucleic Acids Res. 2014;42:D114–D122. doi: 10.1093/nar/gkt980. PubMed DOI PMC

Srinivasan A.R., Olson W.K. Yeast tRNAPhe conformation wheels: A novel probe of the monoclinic and orthorhombic models. Nucleic Acids Res. 1980;8:2307–2329. doi: 10.1093/nar/8.10.2307. PubMed DOI PMC

Dans P.D., Perez A., Faustino I., Lavery R., Orozco M. Exploring polymorphisms in B-DNA helical conformations. Nucleic Acids Res. 2012;40:10668–10678. doi: 10.1093/nar/gks884. PubMed DOI PMC

Gupta A., Kulkarni M., Mukherjee A. Accurate prediction of B-form/A-form DNA conformation propensity from primary sequence: A machine learning and free energy handshake. Patterns. 2021;2:100329. doi: 10.1016/j.patter.2021.100329. PubMed DOI PMC

Bayrak C.S., Kim N., Schlick T. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Nucleic Acids Res. 2017;45:5414–5422. doi: 10.1093/nar/gkx045. PubMed DOI PMC

Corsi F., Lavery R., Laine E., Carbone A. Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties. PLoS Comput. Biol. 2020;16:e1007624. doi: 10.1371/journal.pcbi.1007624. PubMed DOI PMC

Srivastava A., Ahmad S., Gromiha M.M. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins. Int. J. Mol. Sci. 2018;19:1595. doi: 10.3390/ijms19061595. PubMed DOI PMC

Sagendorf J.M., Markarian N., Berman H.M., Rohs R. DNAproDB: An expanded database and web-based tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2020;48:D277–D287. doi: 10.1093/nar/gkz889. PubMed DOI PMC

Schneider B., Berman H.M. Hydration of the DNA bases is local. Biophys. J. 1995;69:2661–2669. doi: 10.1016/S0006-3495(95)80136-0. PubMed DOI PMC

Schneider B., Neidle S., Berman H.M. Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers. 1997;42:113–124. doi: 10.1002/(SICI)1097-0282(199707)42:1<113::AID-BIP10>3.0.CO;2-O. PubMed DOI

Kim S.-H., Berman H.M., Seeman N.C., Newton M.D. Seven basic conformations of nucleic acid structural units. Acta Crystallogr. Sect. B. 1973;29:703–710. doi: 10.1107/S0567740873003201. DOI

Richardson J.S., Schneider B., Murray L.W., Kapral G.J., Immormino R.M., Headd J.J., Richardson D.C., Ham D., Hershkovits E., Williams L.D., et al. RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) RNA. 2008;14:465–481. doi: 10.1261/rna.657708. PubMed DOI PMC

Schneider B., Bozikova P., Cech P., Svozil D., Cerny J. A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle. Genes. 2017;8:278. doi: 10.3390/genes8100278. PubMed DOI PMC

Cerny J., Bozikova P., Svoboda J., Schneider B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48:6367–6381. doi: 10.1093/nar/gkaa383. PubMed DOI PMC

Gouge J., Satia K., Guthertz N., Widya M., Thompson A.J., Cousin P., Dergai O., Hernandez N., Vannini A. Redox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2. Cell. 2015;163:1375–1387. doi: 10.1016/j.cell.2015.11.005. PubMed DOI PMC

Frouws T.D., Duda S.C., Richmond T.J. X-ray structure of the MMTV-A nucleosome core. Proc. Natl. Acad. Sci. USA. 2016;113:1214–1219. doi: 10.1073/pnas.1524607113. PubMed DOI PMC

Olson W.K. Configurational statistics of polynucleotide chains. An updated virtual bond model to treat effects of base stacking. Macromolecules. 1980;13:721–728. doi: 10.1021/ma60075a045. DOI

Wadley L.M., Keating K.S., Duarte C.M., Pyle A.M. Evaluating and learning from RNA pseudotorsional space: Quantitative validation of a reduced representation for RNA structure. J. Mol. Biol. 2007;372:942–957. doi: 10.1016/j.jmb.2007.06.058. PubMed DOI PMC

Vander Zanden C.M., Rowe R.K., Broad A.J., Robertson A.B., Ho P.S. Effect of Hydroxymethylcytosine on the Structure and Stability of Holliday Junctions. Biochemistry. 2016;55:5781–5789. doi: 10.1021/acs.biochem.6b00801. PubMed DOI PMC

Wang Y., Patel D.J. Solution structure of a parallel-stranded G-quadruplex DNA. J. Mol. Biol. 1993;234:1171–1183. doi: 10.1006/jmbi.1993.1668. PubMed DOI

Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002;319:1097–1113. doi: 10.1016/S0022-2836(02)00386-8. PubMed DOI

Lawson C.L., Carey J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature. 1993;366:178–182. doi: 10.1038/366178a0. PubMed DOI

Weaver T.M., Cortez L.M., Khoang T.H., Washington M.T., Agarwal P.K., Freudenthal B.D. Visualizing Rev1 catalyze protein-template DNA synthesis. Proc. Natl. Acad. Sci. USA. 2020;117:25494–25504. doi: 10.1073/pnas.2010484117. PubMed DOI PMC

Jang S.B., Hung L.W., Chi Y.I., Holbrook E.L., Carter R.J., Holbrook S.R. Structure of an RNA internal loop consisting of tandem C-A+ base pairs. Biochemistry. 1998;37:11726–11731. doi: 10.1021/bi980758j. PubMed DOI

Chan C.W., Badong D., Rajan R., Mondragon A. Crystal structures of an unmodified bacterial tRNA reveal intrinsic structural flexibility and plasticity as general properties of unbound tRNAs. RNA. 2020;26:278–289. doi: 10.1261/rna.073478.119. PubMed DOI PMC

Huang L., Wang J., Watkins A.M., Das R., Lilley D.M.J. Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Res. 2019;47:7666–7675. doi: 10.1093/nar/gkz539. PubMed DOI PMC

Noeske J., Wasserman M.R., Terry D.S., Altman R.B., Blanchard S.C., Cate J.H. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 2015;22:336–341. doi: 10.1038/nsmb.2994. PubMed DOI PMC

Li X., Liu S., Zhang L., Issaian A., Hill R.C., Espinosa S., Shi S., Cui Y., Kappel K., Das R., et al. A unified mechanism for intron and exon definition and back-splicing. Nature. 2019;573:375–380. doi: 10.1038/s41586-019-1523-6. PubMed DOI PMC

Landeras-Bueno S., Wasserman H., Oliveira G., VanAernum Z.L., Busch F., Salie Z.L., Wysocki V.H., Andersen K., Saphire E.O. Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essential regulatory form. Cell Rep. 2021;35:108986. doi: 10.1016/j.celrep.2021.108986. PubMed DOI PMC

Lu X.J. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Res. 2020;48:e74. doi: 10.1093/nar/gkaa426. PubMed DOI PMC

Schneider B., Bozikova P., Necasova I., Cech P., Svozil D., Cerny J. A DNA structural alphabet provides new insight into DNA flexibility. Pt 1Acta Cryst. D Struct. Biol. 2018;74:52–64. doi: 10.1107/S2059798318000050. PubMed DOI PMC

Appasamy S.D., Hamdani H.Y., Ramlan E.I., Firdaus-Raih M. InterRNA: A database of base interactions in RNA structures. Nucleic Acids Res. 2016;44:D266–D471. doi: 10.1093/nar/gkv1186. PubMed DOI PMC

Boccaletto P., Machnicka M.A., Purta E., Piatkowski P., Baginski B., Wirecki T.K., de Crecy-Lagard V., Ross R., Limbach P.A., Kotter A., et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–D307. doi: 10.1093/nar/gkx1030. PubMed DOI PMC

Chojnowski G., Walen T., Bujnicki J.M. RNA Bricks—A database of RNA 3D motifs and their interactions. Nucleic Acids Res. 2014;42:D123–D131. doi: 10.1093/nar/gkt1084. PubMed DOI PMC

Zok T., Antczak M., Zurkowski M., Popenda M., Blazewicz J., Adamiak R.W., Szachniuk M. RNApdbee 2.0: Multifunctional tool for RNA structure annotation. Nucleic Acids Res. 2018;46:W30–W35. doi: 10.1093/nar/gky314. PubMed DOI PMC

The RNAcentral Consortium. Petrov A.I., Kay S.J.E., Kalvari I., Howe K.L., Gray K.A., Bruford E.A., Kersey P.J., Cochrane G., Finn R.D. RNAcentral: A comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 2017;45:D128–D134. PubMed PMC

Bernier C.R., Petrov A.S., Waterbury C.C., Jett J., Li F., Freil L.E., Xiong X., Wang L., Migliozzi B.L., Hershkovits E., et al. RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. 2014;169:195–207. doi: 10.1039/C3FD00126A. PubMed DOI

Sagendorf J.M., Berman H.M., Rohs R. DNAproDB: An interactive tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2017;45:W89–W97. doi: 10.1093/nar/gkx272. PubMed DOI PMC

Petrov A.I., Zirbel C.L., Leontis N.B. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA. 2013;19:1327–1340. doi: 10.1261/rna.039438.113. PubMed DOI PMC

Zirbel C., Leontis N. Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In: Leontis N., Westhof E., editors. RNA 3D Structure Analysis and Prediction. Volume 27. Springer; Berlin/Heidelberg, Germany: 2012. pp. 281–298.

Dana J.M., Gutmanas A., Tyagi N., Qi G., O’Donovan C., Martin M., Velankar S. SIFTS: Updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res. 2019;47:D482–D489. doi: 10.1093/nar/gky1114. PubMed DOI PMC

Lu X.J., Bussemaker H.J., Olson W.K. DSSR: An integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;43:e142. doi: 10.1093/nar/gkv716. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...