Developing Community Resources for Nucleic Acid Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 GM085328
NIGMS NIH HHS - United States
RVO 86652036
Czech Academy of Sciences
LTAUSA18197
Ministry of Education, Youth, and Sports of the Czech Republic
R01 GM079429
NIH HHS - United States
R01 GM085238
NIH HHS - United States
PubMed
35455031
PubMed Central
PMC9031032
DOI
10.3390/life12040540
PII: life12040540
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, RNA, biological structure database, nucleic acid conformation, nucleic acid structures, validation standards,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this review, we describe the creation of the Nucleic Acid Database (NDB) at Rutgers University and how it became a testbed for the current infrastructure of the RCSB Protein Data Bank. We describe some of the special features of the NDB and how it has been used to enable research. Plans for the next phase as the Nucleic Acid Knowledgebase (NAKB) are summarized.
Zobrazit více v PubMed
Watson J.D., Crick F.H.C. A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Franklin R.E., Gosling R.G. Molecular configuration in sodium thymonucleate. Nature. 1953;171:740–741. doi: 10.1038/171740a0. PubMed DOI
Sussman J.L., Seeman N.C., Kim S.-H., Berman H.M. The crystal structure of a naturally occurring dinucleotide phosphate uridylyl 3′,5′-adenosine phosphate. models for RNA chain folding. J. Mol. Biol. 1972;66:403–421. doi: 10.1016/0022-2836(72)90423-8. PubMed DOI
Seeman N.C., Rosenberg J.M., Suddath F.L., Kim J.J.P., Rich A. RNA double helical fragments at atomic resolution: I. The crystal and molecular structure of sodium adenylyl-3′-5′-uridine hexahydrate. J. Mol. Biol. 1976;104:109–144. doi: 10.1016/0022-2836(76)90005-X. PubMed DOI
Rosenberg J.M., Seeman N.C., Day R.O., Rich A. RNA double helical fragments at atomic resolution: II. The structure of sodium guanylyl-3′,5′-cytidine nonhydrate. J. Mol. Biol. 1976;104:145–167. doi: 10.1016/0022-2836(76)90006-1. PubMed DOI
Allen F.H., Bellard S., Brice M.D., Cartright B.A., Doubleday A., Higgs H., Hummelink T., Hummelink-Peters B.G., Kennard O., Motherwell W.D.S., et al. The Cambridge Crystallographic Data Centre: Computer-based search, retrieval, analysis and display of information. Acta Crystallogr. 1979;B35:2331–2339. doi: 10.1107/S0567740879009249. DOI
Robertus J.D., Ladner J.E., Finch J.T., Rhodes D., Brown R.S., Clark B.F.C., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974;250:546–551. doi: 10.1038/250546a0. PubMed DOI
Suddath F., Quigley G., McPherson A., Sneden D., Kim J., Kim S., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0 Ångstroms resolution. Nature. 1974;248:20–24. doi: 10.1038/248020a0. PubMed DOI
Quigley G.J., Seeman N.C., Wang A.H., Suddath F.L., Rich A. Yeast phenylalanine transfer RNA: Atomic coordinates and torsion angles. Nucleic Acids Res. 1975;2:2329–2341. doi: 10.1093/nar/2.12.2329. PubMed DOI PMC
Wang A.H.-J., Quigley G.J., Kolpak F.J., Crawford J.L., van Boom J.H., van der Marel G.A., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282:680–686. doi: 10.1038/282680a0. PubMed DOI
Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA. 1981;78:2179–2183. doi: 10.1073/pnas.78.4.2179. PubMed DOI PMC
Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.F., Jr., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977;112:535–542. doi: 10.1016/S0022-2836(77)80200-3. PubMed DOI
Breslauer K.J. A calorimetric determination of enthalpies and heat capacities of protonation. J. Chem. Thermodyn. 1979;11:527–530. doi: 10.1016/0021-9614(79)90090-9. DOI
Breslauer K.J. Methods for Obtaining Thermodynamic Data on Oligonucleotide Transitions. In: Hinz H., editor. Thermodynamic Data for Biochemistry and Biotechnology. Springer; New York, NY, USA: 1986. pp. 402–427.
Breslauer K.J. A thermodynamic perspective of DNA Bending. Curr. Biol. 1991;1:416–422. doi: 10.1016/0959-440X(91)90041-Q. DOI
Breslauer K.J. Extracting Thermodynamic Data From Equilibrium Melting Curves for Oligonucleotide Order-Disorder Transitions. In: Agrawal S., editor. Methods in Molecular Biology, Vol. 26: Protocols for Oligonucleotide Conjugates. Humana Press; Totowa, NJ, USA: 1994. pp. 347–372. Chapter 14. PubMed
Chalikian T.V., Breslauer K.J. Thermodynamic analysis of biomolecules: A volumetric approach. Curr. Opin. Struct. Biol. 1998;8:657–664. doi: 10.1016/S0959-440X(98)80159-0. PubMed DOI
Chalikian T.V., Volker J., Plum G.E., Breslauer K.J. A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA. 1999;96:7853–7858. doi: 10.1073/pnas.96.14.7853. PubMed DOI PMC
Klump H.H., Volker J., Breslauer K.J. Energy mapping of the genetic code and genomic domains: Implications for code evolution and molecular Darwinism. Q. Rev. Biophys. 2020;53:e11. doi: 10.1017/S0033583520000098. PubMed DOI
Volker J., Klump H.H., Breslauer K.J. DNA metastability and biological regulation: Conformational dynamics of metastable omega-DNA bulge loops. J. Am. Chem. Soc. 2007;129:5272–5280. doi: 10.1021/ja070258q. PubMed DOI
Jones R. Preparation of protected deoxyribonucleosides. In: Gait M.J., editor. Oligonucleotide Synthesis, a Practical Approach. IRL Press; Washington, DC, USA: 1984. pp. 22–34.
Manning G. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 1978;11:179–246. doi: 10.1017/S0033583500002031. PubMed DOI
Volker J., Klump H.H., Manning G.S., Breslauer K.J. Counterion association with native and denatured nucleic acids: An experimental approach. J. Mol. Biol. 2001;310:1011–1025. doi: 10.1006/jmbi.2001.4841. PubMed DOI
Erie D., Sinha N., Olson W., Jones R., Breslauer K. A dumbbell-shaped, double-hairpin structure of DNA: A thermodynamic investigation. Biochemistry. 1987;26:7150–7159. doi: 10.1021/bi00396a042. PubMed DOI
Berman H.M., Olson W.K., Beveridge D.L., Westbrook J., Gelbin A., Demeny T., Hsieh S.H., Srinivasan A.R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 1992;63:751–759. doi: 10.1016/S0006-3495(92)81649-1. PubMed DOI PMC
Kitakami H., Tateno Y., Gojobori T. Toward unification of taxonomy databases in a distributed computer environment. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994;2:227–235. PubMed
Bilofsky H.S., Burks C., Fickett J.W., Goad W.B., Lewitter F.I., Rindone W.P., Swindell C.D., Tung C.S. The GenBank genetic sequence databank. Nucleic Acids Res. 1986;14:1861–1863. doi: 10.1093/nar/14.1.1. PubMed DOI PMC
Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., Wheeler D.L. GenBank. Nucleic Acids Res. 2000;28:15–18. doi: 10.1093/nar/28.1.15. PubMed DOI PMC
Parker M. Biological data access through Gopher. Trends Biochem. Sci. 1993;18:485–486. doi: 10.1016/S0968-0004(10)80001-5. PubMed DOI
Fitzgerald P.M.D., Westbrook J.D., Bourne P.E., McMahon B., Watenpaugh K.D., Berman H.M. 4.5 Macromolecular dictionary (mmCIF) In: Hall S.R., McMahon B., editors. International Tables for Crystallography G. Definition and Exchange of Crystallographic Data. Springer; Dordrecht, The Netherlands: 2005. pp. 295–443.
Clowney L., Jain S.C., Srinivasan A.R., Westbrook J., Olson W.K., Berman H.M. Geometric Parameters in Nucleic Acids: Nitrogenous Bases. J. Am. Chem. Soc. 1996;118:509–518. doi: 10.1021/ja952883d. DOI
Gelbin A., Schneider B., Clowney L., Hsieh S.-H., Olson W.K., Berman H.M. Geometric parameters in nucleic acids: Sugar and phosphate constituents. J. Am. Chem. Soc. 1996;118:519–528. doi: 10.1021/ja9528846. DOI
Parkinson G., Vojtechovsky J., Clowney L., Brunger A.T., Berman H.M. New parameters for the refinement of nucleic acid-containing structures. Pt 1Acta Cryst. D Biol. Cryst. 1996;52:57–64. doi: 10.1107/S0907444995011115. PubMed DOI
Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., Heinemann U., Lu X.J., Neidle S., Shakked Z., et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. doi: 10.1006/jmbi.2001.4987. PubMed DOI
Leontis N.B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. doi: 10.1017/S1355838201002515. PubMed DOI PMC
Schneider B., de la Cruz J., Feng Z., Chen L., Dutta S., Persikova I., Westbrook J., Yang H., Young J., Zardecki C., et al. The Nucleic Acid Database. In: Gu J., Bourne P.E., editors. Structural Bioinformatics. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2009. pp. 305–319.
Coimbatore Narayanan B., Westbrook J., Ghosh S., Petrov A.I., Sweeney B., Zirbel C.L., Leontis N.B., Berman H.M. The Nucleic Acid Database: New features and capabilities. Nucleic Acids Res. 2014;42:D114–D122. doi: 10.1093/nar/gkt980. PubMed DOI PMC
Srinivasan A.R., Olson W.K. Yeast tRNAPhe conformation wheels: A novel probe of the monoclinic and orthorhombic models. Nucleic Acids Res. 1980;8:2307–2329. doi: 10.1093/nar/8.10.2307. PubMed DOI PMC
Dans P.D., Perez A., Faustino I., Lavery R., Orozco M. Exploring polymorphisms in B-DNA helical conformations. Nucleic Acids Res. 2012;40:10668–10678. doi: 10.1093/nar/gks884. PubMed DOI PMC
Gupta A., Kulkarni M., Mukherjee A. Accurate prediction of B-form/A-form DNA conformation propensity from primary sequence: A machine learning and free energy handshake. Patterns. 2021;2:100329. doi: 10.1016/j.patter.2021.100329. PubMed DOI PMC
Bayrak C.S., Kim N., Schlick T. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Nucleic Acids Res. 2017;45:5414–5422. doi: 10.1093/nar/gkx045. PubMed DOI PMC
Corsi F., Lavery R., Laine E., Carbone A. Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties. PLoS Comput. Biol. 2020;16:e1007624. doi: 10.1371/journal.pcbi.1007624. PubMed DOI PMC
Srivastava A., Ahmad S., Gromiha M.M. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins. Int. J. Mol. Sci. 2018;19:1595. doi: 10.3390/ijms19061595. PubMed DOI PMC
Sagendorf J.M., Markarian N., Berman H.M., Rohs R. DNAproDB: An expanded database and web-based tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2020;48:D277–D287. doi: 10.1093/nar/gkz889. PubMed DOI PMC
Schneider B., Berman H.M. Hydration of the DNA bases is local. Biophys. J. 1995;69:2661–2669. doi: 10.1016/S0006-3495(95)80136-0. PubMed DOI PMC
Schneider B., Neidle S., Berman H.M. Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers. 1997;42:113–124. doi: 10.1002/(SICI)1097-0282(199707)42:1<113::AID-BIP10>3.0.CO;2-O. PubMed DOI
Kim S.-H., Berman H.M., Seeman N.C., Newton M.D. Seven basic conformations of nucleic acid structural units. Acta Crystallogr. Sect. B. 1973;29:703–710. doi: 10.1107/S0567740873003201. DOI
Richardson J.S., Schneider B., Murray L.W., Kapral G.J., Immormino R.M., Headd J.J., Richardson D.C., Ham D., Hershkovits E., Williams L.D., et al. RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) RNA. 2008;14:465–481. doi: 10.1261/rna.657708. PubMed DOI PMC
Schneider B., Bozikova P., Cech P., Svozil D., Cerny J. A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle. Genes. 2017;8:278. doi: 10.3390/genes8100278. PubMed DOI PMC
Cerny J., Bozikova P., Svoboda J., Schneider B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48:6367–6381. doi: 10.1093/nar/gkaa383. PubMed DOI PMC
Gouge J., Satia K., Guthertz N., Widya M., Thompson A.J., Cousin P., Dergai O., Hernandez N., Vannini A. Redox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2. Cell. 2015;163:1375–1387. doi: 10.1016/j.cell.2015.11.005. PubMed DOI PMC
Frouws T.D., Duda S.C., Richmond T.J. X-ray structure of the MMTV-A nucleosome core. Proc. Natl. Acad. Sci. USA. 2016;113:1214–1219. doi: 10.1073/pnas.1524607113. PubMed DOI PMC
Olson W.K. Configurational statistics of polynucleotide chains. An updated virtual bond model to treat effects of base stacking. Macromolecules. 1980;13:721–728. doi: 10.1021/ma60075a045. DOI
Wadley L.M., Keating K.S., Duarte C.M., Pyle A.M. Evaluating and learning from RNA pseudotorsional space: Quantitative validation of a reduced representation for RNA structure. J. Mol. Biol. 2007;372:942–957. doi: 10.1016/j.jmb.2007.06.058. PubMed DOI PMC
Vander Zanden C.M., Rowe R.K., Broad A.J., Robertson A.B., Ho P.S. Effect of Hydroxymethylcytosine on the Structure and Stability of Holliday Junctions. Biochemistry. 2016;55:5781–5789. doi: 10.1021/acs.biochem.6b00801. PubMed DOI PMC
Wang Y., Patel D.J. Solution structure of a parallel-stranded G-quadruplex DNA. J. Mol. Biol. 1993;234:1171–1183. doi: 10.1006/jmbi.1993.1668. PubMed DOI
Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002;319:1097–1113. doi: 10.1016/S0022-2836(02)00386-8. PubMed DOI
Lawson C.L., Carey J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature. 1993;366:178–182. doi: 10.1038/366178a0. PubMed DOI
Weaver T.M., Cortez L.M., Khoang T.H., Washington M.T., Agarwal P.K., Freudenthal B.D. Visualizing Rev1 catalyze protein-template DNA synthesis. Proc. Natl. Acad. Sci. USA. 2020;117:25494–25504. doi: 10.1073/pnas.2010484117. PubMed DOI PMC
Jang S.B., Hung L.W., Chi Y.I., Holbrook E.L., Carter R.J., Holbrook S.R. Structure of an RNA internal loop consisting of tandem C-A+ base pairs. Biochemistry. 1998;37:11726–11731. doi: 10.1021/bi980758j. PubMed DOI
Chan C.W., Badong D., Rajan R., Mondragon A. Crystal structures of an unmodified bacterial tRNA reveal intrinsic structural flexibility and plasticity as general properties of unbound tRNAs. RNA. 2020;26:278–289. doi: 10.1261/rna.073478.119. PubMed DOI PMC
Huang L., Wang J., Watkins A.M., Das R., Lilley D.M.J. Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Res. 2019;47:7666–7675. doi: 10.1093/nar/gkz539. PubMed DOI PMC
Noeske J., Wasserman M.R., Terry D.S., Altman R.B., Blanchard S.C., Cate J.H. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 2015;22:336–341. doi: 10.1038/nsmb.2994. PubMed DOI PMC
Li X., Liu S., Zhang L., Issaian A., Hill R.C., Espinosa S., Shi S., Cui Y., Kappel K., Das R., et al. A unified mechanism for intron and exon definition and back-splicing. Nature. 2019;573:375–380. doi: 10.1038/s41586-019-1523-6. PubMed DOI PMC
Landeras-Bueno S., Wasserman H., Oliveira G., VanAernum Z.L., Busch F., Salie Z.L., Wysocki V.H., Andersen K., Saphire E.O. Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essential regulatory form. Cell Rep. 2021;35:108986. doi: 10.1016/j.celrep.2021.108986. PubMed DOI PMC
Lu X.J. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Res. 2020;48:e74. doi: 10.1093/nar/gkaa426. PubMed DOI PMC
Schneider B., Bozikova P., Necasova I., Cech P., Svozil D., Cerny J. A DNA structural alphabet provides new insight into DNA flexibility. Pt 1Acta Cryst. D Struct. Biol. 2018;74:52–64. doi: 10.1107/S2059798318000050. PubMed DOI PMC
Appasamy S.D., Hamdani H.Y., Ramlan E.I., Firdaus-Raih M. InterRNA: A database of base interactions in RNA structures. Nucleic Acids Res. 2016;44:D266–D471. doi: 10.1093/nar/gkv1186. PubMed DOI PMC
Boccaletto P., Machnicka M.A., Purta E., Piatkowski P., Baginski B., Wirecki T.K., de Crecy-Lagard V., Ross R., Limbach P.A., Kotter A., et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–D307. doi: 10.1093/nar/gkx1030. PubMed DOI PMC
Chojnowski G., Walen T., Bujnicki J.M. RNA Bricks—A database of RNA 3D motifs and their interactions. Nucleic Acids Res. 2014;42:D123–D131. doi: 10.1093/nar/gkt1084. PubMed DOI PMC
Zok T., Antczak M., Zurkowski M., Popenda M., Blazewicz J., Adamiak R.W., Szachniuk M. RNApdbee 2.0: Multifunctional tool for RNA structure annotation. Nucleic Acids Res. 2018;46:W30–W35. doi: 10.1093/nar/gky314. PubMed DOI PMC
The RNAcentral Consortium. Petrov A.I., Kay S.J.E., Kalvari I., Howe K.L., Gray K.A., Bruford E.A., Kersey P.J., Cochrane G., Finn R.D. RNAcentral: A comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 2017;45:D128–D134. PubMed PMC
Bernier C.R., Petrov A.S., Waterbury C.C., Jett J., Li F., Freil L.E., Xiong X., Wang L., Migliozzi B.L., Hershkovits E., et al. RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. 2014;169:195–207. doi: 10.1039/C3FD00126A. PubMed DOI
Sagendorf J.M., Berman H.M., Rohs R. DNAproDB: An interactive tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2017;45:W89–W97. doi: 10.1093/nar/gkx272. PubMed DOI PMC
Petrov A.I., Zirbel C.L., Leontis N.B. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA. 2013;19:1327–1340. doi: 10.1261/rna.039438.113. PubMed DOI PMC
Zirbel C., Leontis N. Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In: Leontis N., Westhof E., editors. RNA 3D Structure Analysis and Prediction. Volume 27. Springer; Berlin/Heidelberg, Germany: 2012. pp. 281–298.
Dana J.M., Gutmanas A., Tyagi N., Qi G., O’Donovan C., Martin M., Velankar S. SIFTS: Updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res. 2019;47:D482–D489. doi: 10.1093/nar/gky1114. PubMed DOI PMC
Lu X.J., Bussemaker H.J., Olson W.K. DSSR: An integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;43:e142. doi: 10.1093/nar/gkv716. PubMed DOI PMC