On the Possible Effect of Phytic Acid (Myo-Inositol Hexaphosphoric Acid, IP6) on Cytochromes P450 and Systems of Xenobiotic Metabolism in Different Hepatic Models
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 61989592
Palacký University, Olomouc
IGA_LF_2024_006
Palacký University, Olomouc
IGA_LF_2024_011
Palacký University, Olomouc
e-INFRA CZ project no. ID:90254
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38612422
PubMed Central
PMC11011971
DOI
10.3390/ijms25073610
PII: ijms25073610
Knihovny.cz E-zdroje
- Klíčová slova
- CYP1A, IP6, cytochrome P450, drug metabolism, phytates, phytic acid,
- MeSH
- kyselina fytová * MeSH
- lidé MeSH
- messenger RNA MeSH
- savci MeSH
- simulace molekulového dockingu MeSH
- systém (enzymů) cytochromů P-450 MeSH
- xenobiotika * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina fytová * MeSH
- messenger RNA MeSH
- systém (enzymů) cytochromů P-450 MeSH
- xenobiotika * MeSH
As compounds of natural origin enter human body, it is necessary to investigate their possible interactions with the metabolism of drugs and xenobiotics in general, namely with the cytochrome P450 (CYP) system. Phytic acid (myo-inositol hexaphosphoric acid, IP6) is mainly present in plants but is also an endogenous compound present in mammalian cells and tissues. It has been shown to exhibit protective effect in many pathological conditions. For this paper, its interaction with CYPs was studied using human liver microsomes, primary human hepatocytes, the HepG2 cell line, and molecular docking. Docking experiments and absorption spectra demonstrated the weak ability of IP6 to interact in the heme active site of CYP1A. Molecular docking suggested that IP6 preferentially binds to the protein surface, whereas binding to the active site of CYP1A2 was found to be less probable. Subsequently, we investigated the ability of IP6 to modulate the metabolism of xenobiotics for both the mRNA expression and enzymatic activity of CYP1A enzymes. Our findings revealed that IP6 can slightly modulate the mRNA levels and enzyme activity of CYP1A. However, thanks to the relatively weak interactions of IP6 with CYPs, the chances of the mechanisms of clinically important drug-drug interactions involving IP6 are low.
Zobrazit více v PubMed
Humer E., Schwarz C., Schedle K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015;99:605–625. doi: 10.1111/jpn.12258. PubMed DOI
Brinch-Pedersen H., Madsen C.K., Holme I.B., Dionisio G. Increased understanding of the cereal phytase complement for better mineral bio-availability and resource management. J. Cereal Sci. 2014;59:373–381. doi: 10.1016/j.jcs.2013.10.003. DOI
Iqbal T.H., Lewis K.O., Cooper B.T. Phytase activity in the human and rat small intestine. Gut. 1994;35:1233–1236. doi: 10.1136/gut.35.9.1233. PubMed DOI PMC
Kumar A., Singh B., Raigond P., Sahu C., Mishra U.N., Sharma S., Lal M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 2021;142:110193. doi: 10.1016/j.foodres.2021.110193. PubMed DOI
Ran X., Hu G., He F., Li K., Li F., Xu D., Liu J., Fu S. Phytic acid improves hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-fed mice by modulating the gut-liver axis. J. Agric. Food Chem. 2022;70:11401–11411. doi: 10.1021/acs.jafc.2c04406. PubMed DOI
Brehm M.A., Windhorst S. New options of cancer treatment employing InsP6. Biochem. Pharmacol. 2019;163:206–214. doi: 10.1016/j.bcp.2019.02.024. PubMed DOI
Chakkour M., Greenberg M.L. Insights into the roles of inositol hexakisphosphate kinase (IP6K1) in mammalian cellular processes. J. Biol. Chem. 2024:107116. doi: 10.1016/j.jbc.2024.107116. PubMed DOI
Anzenbacher P., Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol. Life Sci. 2001;58:737–747. doi: 10.1007/PL00000897. PubMed DOI PMC
Guengerich F.P. Human Cytochrome P450 Enzymes. In: Ortiz de Montellano P.R., editor. Cytochrome P450: Structure, Mechanism, and Biochemistry. Springer; Boston, MA, USA: 2005. pp. 377–530. DOI
Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Santes-Palacios R., Ornelas-Ayala D., Cabañas N., Marroquín-Pérez A., Hernández-Magaña A., Del Rosario Olguín-Reyes S., Camacho-Carranza R., Espinosa-Aguirre J.J. Regulation of Human Cytochrome P4501A1 (hCYP1A1): A Plausible Target for Chemoprevention? Biomed Res. Int. 2016;2016:5341081. doi: 10.1155/2016/5341081. PubMed DOI PMC
Chen Y., Zeng L., Wang Y., Tolleson W.H., Knox B., Chen S., Ren Z., Guo L., Mei N., Qian F., et al. The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem. Pharmacol. 2017;145:178–191. doi: 10.1016/j.bcp.2017.08.012. PubMed DOI PMC
Jourova L., Anzenbacherova E., Dostal Z., Anzenbacher P., Briolotti P., Rigal E., Daujat-Chavanieu M., Gerbal-Chaloin S. Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome, and hepatic drug metabolism. J. Nutr. Biochem. 2022;107:109042. doi: 10.1016/j.jnutbio.2022.109042. PubMed DOI
Srovnalova A., Vanduchova A., Svecarova M., Anzenbacherova E., Tomankova V., Anzenbacher P., Dvorak Z. Effects of sulforaphane and its S- and R-enantiomers on the expression and activities of human drug-metabolizing cytochromes P450. J. Funct. Foods. 2015;14:487–501. doi: 10.1016/j.jff.2015.02.006. DOI
Guengerich F.P. Inhibition of cytochrome P450 enzymes by drugs-molecular basis and practical applications. Biomol. Ther. 2022;30:1–18. doi: 10.4062/biomolther.2021.102. PubMed DOI PMC
Schenkman J.B., Jansson I. Spectral analyses of cytochromes P450. Methods Mol. Biol. 2006;320:11–18. doi: 10.1385/1-59259-998-2:11. PubMed DOI
Kumaki K., Sato M., Kon H., Nebert D.W. Correlation of type I, type II, and reverse type I difference spectra with absolute changes in spin state of hepatic microsomal cytochrome P-450 iron from five mammalian species. J. Biol. Chem. 1978;253:1048–1058. doi: 10.1016/S0021-9258(17)38109-7. PubMed DOI
Schenkman J.B., Cinti D.L., Orrenius S., Moldeus P., Kraschnitz R. The nature of the reverse type I (modified type II) spectral change in liver microsomes. Biochemistry. 1972;11:4243–4251. doi: 10.1021/bi00773a008. PubMed DOI
Chang T.K., Waxman D.J. Enzymatic analysis of cDNA-expressed human CYP1A1, CYP1A2, and CYP1B1 with 7-ethoxyresorufin as substrate. Methods Mol. Biol. 2006;320:85–90. doi: 10.1385/1-59259-998-2:85. PubMed DOI
Miller K.P., Ramos K.S. Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab. Rev. 2001;33:1–35. doi: 10.1081/DMR-100000138. PubMed DOI
Frybortova V.S.S., Jourova L., Anzenbacher P., Anzenbacherova E. Phytic acid; Proceedings of the Kvetina Day, Interdisciplinary Conference of Young Pharmacologists and Toxicologists; Brno, Czech Republic. 25 May 2023; Abstract Book.
Safe S., Jayaraman A., Chapkin R.S. Ah receptor ligands and their impacts on gut resilience: Structure-activity effects. Crit. Rev. Toxicol. 2020;50:463–473. doi: 10.1080/10408444.2020.1773759. PubMed DOI PMC
Jefcoate C.R. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol. 1978;52:258–279. doi: 10.1016/s0076-6879(78)52029-6. PubMed DOI
Wang R., Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021;20:2081–2105. doi: 10.1111/1541-4337.12714. PubMed DOI
Šrejber M., Navrátilová V., Paloncýová M., Bazgier V., Berka K., Anzenbacher P., Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 2018;183:117–136. doi: 10.1016/j.jinorgbio.2018.03.002. PubMed DOI
Irvine R.F. Inositide evolution-towards turtle domination? J. Physiol. 2005;566:295–300. doi: 10.1113/jphysiol.2005.087387. PubMed DOI PMC
Shamsuddin A.M. Metabolism and cellular functions of IP6: A review. Anticancer Res. 1999;19:3733–3736. PubMed
Stuart J.A., Anderson K.L., French P.J., Kirk C.J., Michell R.H. The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells. Biochem. J. 1994;303:517–525. doi: 10.1042/bj3030517. PubMed DOI PMC
Gerbal-Chaloin S., Dumé A.S., Briolotti P., Klieber S., Raulet E., Duret C., Fabre J.M., Ramos J., Maurel P., Daujat-Chavanieu M. The WNT/β-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Mol. Pharmacol. 2014;86:624–634. doi: 10.1124/mol.114.094797. PubMed DOI
Xu L., Li A.P., Kaminski D.L., Ruh M.F. 2,3,7,8 Tetrachlorodibenzo-p-dioxin induction of cytochrome P4501A in cultured rat and human hepatocytes. Chem. Biol. Interact. 2000;124:173–189. doi: 10.1016/S0009-2797(99)00149-0. PubMed DOI
Guo L., Dial S., Shi L., Branham W., Liu J., Fang J.L., Green B., Deng H., Kaput J., Ning B. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab. Dispos. 2011;39:528–538. doi: 10.1124/dmd.110.035873. PubMed DOI PMC
Beedanagari S.R., Bebenek I., Bui P., Hankinson O. Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicol. Sci. 2009;110:61–67. doi: 10.1093/toxsci/kfp079. PubMed DOI PMC
Murphy K.A., Villano C.M., Dorn R., White L.A. Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J. Biol. Chem. 2004;279:25284–25293. doi: 10.1074/jbc.M402168200. PubMed DOI
Gupta R.C., Lall R., Srivastava A. Nutraceuticals. 2nd ed. Academic Press; Cambridge, MA, USA: 2021. Index; pp. 1321–1363. DOI
Vanduchova A., Tomankova V., Anzenbacher P., Anzenbacherova E. Influence of sulforaphane metabolites on activities of human drug-metabolizing cytochrome P450 and determination of sulforaphane in human liver cells. J. Med. Food. 2016;19:1141–1146. doi: 10.1089/jmf.2016.0063. PubMed DOI
Schenkman J.B., Remmer H., Estabrook R.W. Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 1967;3:113–123. PubMed
Locuson C.W., Hutzler J.M., Tracy T.S. Visible spectra of type II cytochrome P450-drug complexes: Evidence that "incomplete" heme coordination is common. Drug Metab. Dispos. 2007;35:614–622. doi: 10.1124/dmd.106.012609. PubMed DOI
Kumar V., Wahlstrom J.L., Rock D.A., Warren C.J., Gorman L.A., Tracy T.S. CYP2C9 inhibition: Impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab. Dispos. 2006;34:1966–1975. doi: 10.1124/dmd.106.010926. PubMed DOI
Tornio A., Backman J.T. Cytochrome P450 in Pharmacogenetics: An Update. Adv. Pharmacol. 2018;83:3–32. doi: 10.1016/bs.apha.2018.04.007. PubMed DOI
Delescluse C., Lemaire G., de Sousa G., Rahmani R. Is CYP1A1 induction always related to AHR signaling pathway? Toxicology. 2000;153:73–82. doi: 10.1016/S0300-483X(00)00305-X. PubMed DOI
Vrba J., Vrublova E., Modriansky M., Ulrichova J. Protopine and allocryptopine increase mRNA levels of cytochromes P450 1A in human hepatocytes and HepG2 cells independently of AhR. Toxicol. Lett. 2011;203:135–141. doi: 10.1016/j.toxlet.2011.03.015. PubMed DOI
Monostory K., Pascussi J.M., Kóbori L., Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab. Rev. 2009;41:547–572. doi: 10.1080/03602530903112284. PubMed DOI
Pandey M., Gupta K.P. Epigenetics, an early event in the modulation of gene expression by inositol hexaphosphate in ethylnitrosourea exposed mouse lungs. Nutr. Cancer. 2011;63:89–99. doi: 10.1080/01635581.2010.516868. PubMed DOI
Watson P.J., Millard C.J., Riley A.M., Robertson N.S., Wright L.C., Godage H.Y., Cowley S.M., Jamieson A.G., Potter B.V., Schwabe J.W. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun. 2016;7:11262. doi: 10.1038/ncomms11262. PubMed DOI PMC
Wu S.E., Hashimoto-Hill S., Woo V., Eshleman E.M., Whitt J., Engleman L., Karns R., Denson L.A., Haslam D.B., Alenghat T. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature. 2020;586:108–112. doi: 10.1038/s41586-020-2604-2. PubMed DOI PMC
Green E.S., Zangerl A.R., Berenbaum M.R. Effects of phytic acid and xanthotoxin on growth and detoxification in caterpillars. J. Chem. Ecol. 2001;27:1763–1773. doi: 10.1023/A:1010452507718. PubMed DOI
Lake B.G. Preparation and characterization of microsomal fractions for studies on xenobiotic metabolism. In: BMK S., editor. Biochemical Toxicology, A Practical Approach. Oxford University Press; Oxford, UK: 1987. pp. 183–215.
Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. I. evidence for its hemoprotein nature. J. Biol. Chem. 1964;239:2370–2378. doi: 10.1016/S0021-9258(20)82244-3. PubMed DOI
Sansen S., Yano J.K., Reynald R.L., Schoch G.A., Griffin K.J., Stout C.D., Johnson E.F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem. 2007;282:14348–14355. doi: 10.1074/jbc.M611692200. PubMed DOI
Eswar N., Webb B., Marti-Renom M.A., Madhusudhan M.S., Eramian D., Shen M.Y., Pieper U., Sali A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 2006;5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Isom H.C., Secott T., Georgoff I., Woodworth C., Mummaw J. Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad. Sci. USA. 1985;82:3252–3256. doi: 10.1073/pnas.82.10.3252. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI