Deciphering Dickerson-Drew DNA Equilibrium beyond the BI/BII DNA Dichotomy by Interpretation of 31P NMR Parameters
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40956060
PubMed Central
PMC12529900
DOI
10.1021/acs.jctc.5c01076
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie MeSH
- konformace nukleové kyseliny MeSH
- magnetická rezonanční spektroskopie MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
DNA duplexes exist as dynamic ensembles of interconverting conformations in solution. Conventional nuclear magnetic resonance (NMR) data interpretation often simplifies this behavior by assuming one dominant structure, but multiple substates (such as different backbone conformers) can coexist. Here, we present an approach that refines the interpretation of 31P NMR data in the Dickerson-Drew DNA by integrating a nucleotide conformational classification (NtC) (Černý et al., Nucleic Acids Research 2020, 48, 6367-6381) with molecular dynamics (MD) simulations. By finely classifying backbone conformers into distinct NtC-defined states and using MD to predict their populations, we achieve a more nuanced correspondence between experimental NMR observables and DNA structure-dynamical heterogeneity. Application of this framework demonstrates a radical improvement of NMR data interpretation, thereby enhancing the reliability of deducing DNA conformational equilibria in solution.
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences 182 00 Prague 8 Czech Republic
Zobrazit více v PubMed
Schroeder S. A., Roongta V., Fu J. M., Jones C. R., Gorenstein D. G.. Sequence-Dependent Variations in the P-31 Nmr-Spectra and Backbone Torsional Angles of Wild-Type and Mutant Lac Operator Fragments. Biochemistry-Us. 1989;28(21):8292–8303. doi: 10.1021/bi00447a006. PubMed DOI
Reddy S. Y., Obika S., Bruice T. C.. Conformations and dynamics of Ets-1 ETS domain-DNA complexes. P Natl. Acad. Sci. USA. 2003;100(26):15475–15480. doi: 10.1073/pnas.1936251100. PubMed DOI PMC
Wellenzohn B., Flader W., Winger R. H., Hallbrucker A., Mayer E., Liedl K. R.. Exocyclic groups in the minor groove influence the backbone conformation of DNA. Nucleic Acids Res. 2001;29(24):5036–5043. doi: 10.1093/nar/29.24.5036. PubMed DOI PMC
van Dam L., Korolev N., Nordenskiöld L.. Polyamine-nucleic acid interactions and the effects on structure in oriented DNA fibers. Nucleic Acids Res. 2002;30(2):419–428. doi: 10.1093/nar/30.2.419. PubMed DOI PMC
Hartmann B., Piazzola D., Lavery R.. B-I-B-Ii Transitions in B-DNA. Nucleic Acids Res. 1993;21(3):561–568. doi: 10.1093/nar/21.3.561. PubMed DOI PMC
Schwieters C. D., Clore G. M.. A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data. Biochemistry-Us. 2007;46(5):1152–1166. doi: 10.1021/bi061943x. PubMed DOI
Heddi B., Foloppe N., Bouchemal N., Hantz E., Hartmann B.. Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. J. Am. Chem. Soc. 2006;128(28):9170–9177. doi: 10.1021/ja061686j. PubMed DOI
Ben Imeddourene A., Elbahnsi A., Guéroult M., Oguey C., Foloppe N., Hartmann B.. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics. PLoS Comput. Biol. 2015;11:e1004631. doi: 10.1371/journal.pcbi.1004631. PubMed DOI PMC
Schneider B., Božíková P., Nečasová I., Čech P., Svozil D., Černý J.. A DNA structural alphabet provides new insight into DNA flexibility. Acta Crystallogr. Sect. D-Struct. Biol. 2018;74:52–64. doi: 10.1107/S2059798318000050. PubMed DOI PMC
Hartmann B., Lavery R.. DNA structural forms. Q. Rev. Biophys. 1996;29(4):309–368. doi: 10.1017/S0033583500005874. PubMed DOI
Zubova E. A., Strelnikov I. A.. Experimental detection of conformational transitions between forms of DNA: problems and prospects. Biophysical Reviews. 2023;15:1053–1078. doi: 10.1007/s12551-023-01143-9. PubMed DOI PMC
Černý J., Božíková P., Svoboda J., Schneider B.. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48(11):6367–6381. doi: 10.1093/nar/gkaa383. PubMed DOI PMC
Černý J., Božíková P., Malý M., Tykač M., Biedermannová L., Schneider B.. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr. Sect. D-Struct. Biol. 2020;76:805–813. doi: 10.1107/S2059798320009389. PubMed DOI PMC
Černý J., Božíková P., Schneider B.. DNATCO: assignment of DNA conformers at dnatco.org. Nucleic Acids Res. 2016;44(W1):W284–W287. doi: 10.1093/nar/gkw381. PubMed DOI PMC
Anderson C. F., Record M. T.. Salt Nucleic-Acid Interactions. Annu. Rev. Phys. Chem. 1995;46:657–700. doi: 10.1146/annurev.pc.46.100195.003301. PubMed DOI
Sharp K. A., Honig B.. Salt Effects on Nucleic-Acids. Curr. Opin Struc Biol. 1995;5(3):323–328. doi: 10.1016/0959-440X(95)80093-X. PubMed DOI
Lankaš F., Šponer J., Hobza P., Langowski J. J.. Sequence-dependent elastic properties of DNA. J. Mol. Biol. 2000;299(3):695–709. doi: 10.1006/jmbi.2000.3781. PubMed DOI
Lavery R., Zakrzewska K., Beveridge D., Bishop T. C., Case D. A., Cheatham T., Dixit S., Jayaram B., Lankaš F., Laughton C.. et al. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 2010;38(1):299–313. doi: 10.1093/nar/gkp834. PubMed DOI PMC
Cheng Y. H., Korolev N., Nordenskiöld L.. Similarities and differences in interaction of K and Na with condensed ordered DNA.: A molecular dynamics computer simulation study. Nucleic Acids Res. 2006;34(2):686–696. doi: 10.1093/nar/gkj434. PubMed DOI PMC
Lavery R., Maddocks J. H., Pasi M., Zakrzewska K.. Analyzing ion distributions around DNA. Nucleic Acids Res. 2014;42(12):8138–8149. doi: 10.1093/nar/gku504. PubMed DOI PMC
Pasi M., Maddocks J. H., Lavery R.. Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics. Nucleic Acids Res. 2015;43(4):2412–2423. doi: 10.1093/nar/gkv080. PubMed DOI PMC
Musselman C. A., Kutateladze T. G.. Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chem. Biol. 2022;17(3):495–502. doi: 10.1021/acschembio.1c00954. PubMed DOI PMC
Oh K. I., Kim J., Park C. J., Lee J. H.. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int. J. Mol. Sci. 2020;21(8):2673. doi: 10.3390/ijms21082673. PubMed DOI PMC
Wijmenga S. S., van Buuren B. N. M.. The use of NMR methods for conformational studies of nucleic acids. Prog. Nucl. Magn. Reson. Spectrosc. 1998;32:287–387. doi: 10.1016/S0079-6565(97)00023-X. DOI
Williams B., Zhao B., Tandon A., Ding F., Weeks K. M., Zhang Q., Dokholyan N. V.. Structure modeling of RNA using sparse NMR constraints. Nucleic Acids Res. 2017;45(22):12638–12647. doi: 10.1093/nar/gkx1058. PubMed DOI PMC
Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Kaupp, M. ; Malkin, V. G. . Special Issue:Quantum Chemical Calculations of NMR and EPR Parameters - Foreword. In Journal of Computational Chemistry; Wiley: 1999; Vol. 20(12) pp v–vii.
Kaupp, M. ; Vaara, J. ; Munzarova, M. ; Malkina, O. L. ; Malkin, V. G. . Density Functional Calculations of NMR and EPR Parameters for Heavy-Element Compounds. In Book of Abstracts; American Chemical Society, 2000; Vol. 219, p U590.
Cheatham T. E., Young M. A.. Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers. 2000;56(4):232–256. doi: 10.1002/1097-0282(2000)56:4<232::AID-BIP10037>3.0.CO;2-H. PubMed DOI
Liu C., Li Y., Han B. Y., Gong L. D., Lu L. N., Yang Z. Z., Zhao D. X.. Development of the ABEEMσπ Polarization Force Field for Base Pairs with Amino Acid Residue Complexes. J. Chem. Theory Comput. 2017;13(5):2098–2111. doi: 10.1021/acs.jctc.6b01206. PubMed DOI
Calcagno F., Maryasin B., Garavelli M., Avagliano D., Rivalta I.. Modeling solvent effects and convergence of 31P-NMR shielding calculations with COBRAMM. J. Comput. Chem. 2024;45:1562–1575. doi: 10.1002/jcc.27338. PubMed DOI
Colherinhas G., Oliveira L. B. A., Castro M. A., Fonseca T. L., Coutinho K., Canuto S.. On the calculation of magnetic properties of nucleic acids in liquid water with the sequential QM/MM method. J. Mol. Liq. 2019;294:111611. doi: 10.1016/j.molliq.2019.111611. DOI
Szántó J. K., Dietschreit J. C. B., Shein M., Schütz A. K., Ochsenfeld C.. Systematic QM/MM Study for Predicting 31P NMR Chemical Shifts of Adenosine Nucleotides in Solution and Stages of ATP Hydrolysis in a Protein Environment. J. Chem. Theory Comput. 2024;20:2433–2444. doi: 10.1021/acs.jctc.3c01280. PubMed DOI PMC
Maste S., Sharma B., Pongratz T., Grabe B., Hiller W., Erlach M. B., Kremer W., Kalbitzer H. R., Marx D., Kast S. M.. The accuracy limit of chemical shift predictions for species in aqueous solution. Phys. Chem. Chem. Phys. 2024;26(7):6386–6395. doi: 10.1039/D3CP05471C. PubMed DOI
Ketzel A. F., Li X. L., Kaupp M., Sun H., Schattenberg C. J.. Benchmark of Density Functional Theory in the Prediction of C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation. J. Chem. Theory Comput. 2025;21:871–885. doi: 10.1021/acs.jctc.4c01407. PubMed DOI PMC
Přecechtělová J., Munzarová M. L., Novák P., Sklenář V.. Relationships between P chemical shift tensors and conformation of nucleic acid backbone:: A DFT study. J. Phys. Chem. B. 2007;111(10):2658–2667. doi: 10.1021/jp0668652. PubMed DOI
Přecechtělová J., Munzarová M. L., Vaara J., Novotný J., Dračínský M., Sklenář V.. Toward Reproducing Sequence Trends in Phosphorus Chemical Shifts for Nucleic Acids by MD/DFT Calculations. J. Chem. Theory Comput. 2013;9(3):1641–1656. doi: 10.1021/ct300488y. PubMed DOI
Přecechtělová J., Novák P., Munzarová M. L., Kaupp M., Sklenář V.. Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations. J. Am. Chem. Soc. 2010;132(48):17139–17148. doi: 10.1021/ja104564g. PubMed DOI
Přecechtělová J., Padrta P., Munzarová M. L., Sklenář V.. P chemical shift tensors for canonical and non-canonical conformations of nucleic acids:: A DFT study and NMR implications. J. Phys. Chem. B. 2008;112(11):3470–3478. doi: 10.1021/jp076073n. PubMed DOI
Přecechtělová J. P., Mládek A., Zapletal V., Hritz J.. Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins. J. Chem. Theory Comput. 2019;15(10):5642–5658. doi: 10.1021/acs.jctc.8b00257. PubMed DOI
Benda L., Schneider B., Sychrovský V.. Calculating the Response of NMR Shielding Tensor σ(P) and 2J(P,C) Coupling Constants in Nucleic Acid Phosphate to Coordination of the Mg Cation. J. Phys. Chem. A. 2011;115(11):2385–2395. doi: 10.1021/jp1114114. PubMed DOI
Benda L., Vokáčová Z. S., Straka M., Sychrovský V.. Correlating the 31P NMR Chemical Shielding Tensor and the 2J(P,C) Spin-Spin Coupling Constants with Torsion Angles ζ and α in the Backbone of Nucleic Acids. J. Phys. Chem. B. 2012;116(12):3823–3833. doi: 10.1021/jp2099043. PubMed DOI
Vokáčová Z., Buděšínský M., Rosenberg I., Schneider B., Šponer J., Sychrovský V.. Structure and Dynamics of the ApA, ApC, CpA, and CpC RNA Dinucleoside Monophosphates Resolved with NMR Scalar Spin-Spin Couplings. J. Phys. Chem. B. 2009;113(4):1182–1191. doi: 10.1021/jp809762b. PubMed DOI
Fukal J., Buděšínský M., Páv O., Jurečka P., Zgarbová M., Šebera J., Sychrovský V.. The Ad-MD method to calculate NMR shift including effects due to conformational dynamics: The P-31 NMR shift in DNA. J. Comput. Chem. 2022;43(2):132–143. doi: 10.1002/jcc.26778. PubMed DOI
Fukal J., Zgarbová M., Jurečka P., Šebera J., Sychrovský V.. Probabilistic Interpretation of NMR J-Couplings Determines BI-BII State Equilibria in DNA. J. Chem. Theory Comput. 2022;18(11):6989–6999. doi: 10.1021/acs.jctc.2c00733. PubMed DOI
Fukal J., Páv O., Buděšínský M., Šebera J., Sychrovský V.. The benchmark of 31P NMR parameters in phosphate: a case study on structurally constrained and flexible phosphate. Phys. Chem. Chem. Phys. 2017;19(47):31830–31841. doi: 10.1039/C7CP06969C. PubMed DOI
Ulyanov N. B., James T. L.. Statistical analysis of DNA duplex structural features. Method Enzymol. 1995;261:90–120. doi: 10.1016/S0076-6879(95)61006-5. PubMed DOI
Lam S. L., Chi L. M.. Use of chemical shifts for structural studies of nucleic acids. Prog. Nucl. Mag Res. Sp. 2010;56(3):289–310. doi: 10.1016/j.pnmrs.2010.01.002. PubMed DOI
Gorenstein D. G.. Conformation and dynamics of DNA and protein-DNA complexes by 31P NMR. Chem. Rev. 1994;94(5):1315–1338. doi: 10.1021/cr00029a007. DOI
Warhaut S., Mertinkus K. R., Höllthaler P., Fürtig B., Heilemann M., Hengesbach M., Schwalbe H.. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res. 2017;45(9):5512–5522. doi: 10.1093/nar/gkx110. PubMed DOI PMC
Nielsen G., Schwalbe H.. Protein NMR spectroscopy: Hydrogen bonds under pressure. Nat. Chem. 2012;4(9):693–695. doi: 10.1038/nchem.1443. PubMed DOI
Ardenkjaer-Larsen J. H., Boebinger G. S., Comment A., Duckett S., Edison A. S., Engelke F., Griesinger C., Griffin R. G., Hilty C., Maeda H.. et al. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy. Angew. Chem. Int. Edit. 2015;54(32):9162–9185. doi: 10.1002/anie.201410653. PubMed DOI PMC
Cesari A., Gil-Ley A., Bussi G.. Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement. J. Chem. Theory Comput. 2016;12(12):6192–6200. doi: 10.1021/acs.jctc.6b00944. PubMed DOI
Das A. K., Tuckerman M. E., Kirmizialtin S.. HB-CUFIX: Force field for accurate RNA simulations. J. Chem. Phys. 2025;162:200901. doi: 10.1063/5.0249905. PubMed DOI
Wu Z. G., Delaglio F., Tjandra N., Zhurkin V. B., Bax A.. Overall structure and sugar dynamics of a DNA dodecamer from homoand heteronuclear dipolar couplings and P-31 chemical shift anisotropy. J. Biomol. NMR. 2003;26(4):297–315. doi: 10.1023/A:1024047103398. PubMed DOI
Berendsen H. J. C., Grigera J. R., Straatsma T. P.. The missing term in effective pair potentials. J. Phys. Chem. 1987;91(24):6269–6271. doi: 10.1021/j100308a038. DOI
Joung I. S., Cheatham T. E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112(30):9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Joung I. S., Cheatham T. E.. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B. 2009;113(40):13279–13290. doi: 10.1021/jp902584c. PubMed DOI PMC
Case D. A., Cheatham T.E. 3rd, Darden T., Gohlke H., Luo R., Merz K.M. Jr., Onufriev A., Simmerling C., Wang B., Woods R. J.. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26(16):1668–1688. doi: 10.1002/jcc.20290. PubMed DOI PMC
Zgarbová M., Otyepka M., Šponer J., Lankaš F., Jurečka P.. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014;10(8):3177–3189. doi: 10.1021/ct500120v. PubMed DOI
Zgarbová M., Šponer J., Jurečka P.. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021;17(10):6292–6301. doi: 10.1021/acs.jctc.1c00697. PubMed DOI
Ivani I., Dans P. D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Goñi R., Balaceanu A.. et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods. 2016;13(1):55–58. doi: 10.1038/nmeth.3658. PubMed DOI PMC
Becke A. D.. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 1993;98(7):5648–5652. doi: 10.1063/1.464913. DOI
Lee C. T., Yang W. T., Parr R. G.. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B. 1988;37(2):785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Vosko S. H., Wilk L., Nusair M.. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations - a critical analysis. Can. J. Phys. 1980;58(8):1200–1211. doi: 10.1139/p80-159. DOI
Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields. J. Phys. Chem. 1994;98(45):11623–11627. doi: 10.1021/j100096a001. DOI
Hariharan P. C., Pople J. A.. The influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chim. Acta. 1973;28(3):213–222. doi: 10.1007/BF00533485. DOI
Krishnan R., Binkley J. S., Seeger R., Pople J. A.. Self-consistent molecular-orbital methods. 20. A basis set for correlated wave-functions. J. Chem. Phys. 1980;72(1):650–654. doi: 10.1063/1.438955. DOI
Francl M. M., Pietro W. J., Hehre W. J., Binkley J. S., Gordon M. S., Defrees D. J., Pople J. A.. Self-consistent molecular-orbital methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982;77(7):3654–3665. doi: 10.1063/1.444267. DOI
Clark T., Chandrasekhar J., Spitznagel G. W., Schleyer P. V.. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983;4(3):294–301. doi: 10.1002/jcc.540040303. DOI
Gill P. M. W., Johnson B. G., Pople J. A., Frisch M. J.. The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis-sets. Chem. Phys. Lett. 1992;197(4–5):499–505. doi: 10.1016/0009-2614(92)85807-M. DOI
Marenich A. V., Cramer C. J., Truhlar D. G.. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113(18):6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Sychrovský V., Grafenstein J., Cremer D.. Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory. J. Chem. Phys. 2000;113(9):3530–3547. doi: 10.1063/1.1286806. DOI
Helgaker T., Watson M., Handy N. C.. Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J. Chem. Phys. 2000;113(21):9402–9409. doi: 10.1063/1.1321296. DOI
Jensen F.. The optimum contraction of basis sets for calculating spin-spin coupling constants. Theor. Chem. Acc. 2010;126(5–6):371–382. doi: 10.1007/s00214-009-0699-5. DOI
Ditchfield R.. Self-Consistent Perturbation-Theory of Diamagnetism 0.1. Gauge-Invariant Lcao Method for Nmr Chemical-Shifts. Mol. Phys. 1974;27(4):789–807. doi: 10.1080/00268977400100711. DOI
Wolinski K., Hinton J. F., Pulay P.. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for Nmr Chemical-Shift Calculations. J. Am. Chem. Soc. 1990;112(23):8251–8260. doi: 10.1021/ja00179a005. DOI
Cheeseman J. R., Trucks G. W., Keith T. A., Frisch M. J.. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996;104(14):5497–5509. doi: 10.1063/1.471789. DOI
Kutzelnigg, W. ; Fleischer, U. ; Schindler, M. . The IGLO-Method: Ab-initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities; Springler, 1991.
Fukal J., Páv O., Buděšínský M., Rosenberg I., Šebera J., Sychrovský V.. Structural interpretation of the P-31 NMR chemical shifts in thiophosphate and phosphate: key effects due to spin-orbit and explicit solvent. Phys. Chem. Chem. Phys. 2019;21(19):9924–9934. doi: 10.1039/C9CP01460H. PubMed DOI
van Wullen C.. A comparison of density functional methods for the calculation of phosphorus-31 NMR chemical shifts. Phys. Chem. Chem. Phys. 2000;2(10):2137–2144. doi: 10.1039/b000461h. DOI
Ott J., Eckstein F.. P-31 NMR Spectral-Analysis of the Dodecamer D(CGCGAATTCGCG) Biochemistry. 1985;24(10):2530–2535. doi: 10.1021/bi00331a020. DOI
Wu Z. R., Tjandra N., Bax A.. Measurement of (1)H3′-P-31 dipolar couplings in a DNA oligonucleotide by constant-time NOESY difference spectroscopy. J. Biomol. NMR. 2001;19(4):367–370. doi: 10.1023/A:1011292803363. PubMed DOI
Tian Y., Kayatta M., Shultis K., Gonzalez A., Mueller L. J., Hatcher M. E.. NMR Investigation of Backbone Dynamics in DNA Binding Sites. J. Phys. Chem. B. 2009;113(9):2596–2603. doi: 10.1021/jp711203m. PubMed DOI PMC
Clore G. M., Murphy E. C., Gronenborn A. M., Bax A.. Determination of three-bond (1)H3 ’-P-31 couplings in nucleic acids and protein nucleic acid complexes by quantitative J correlation spectroscopy. J. Magn. Reson. 1998;134(1):164–167. doi: 10.1006/jmre.1998.1513. PubMed DOI
Sklenář V., Bax A.. Measurement of 1H-31P NMR coupling-constants in double-stranded DNA fragments. J. Am. Chem. Soc. 1987;109(24):7525–7526. doi: 10.1021/ja00258a044. DOI
Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R. A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P.. et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018;118(8):4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC