The Ad-MD method to calculate NMR shift including effects due to conformational dynamics: The 31 P NMR shift in DNA

. 2022 Jan 15 ; 43 (2) : 132-143. [epub] 20211103

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34729803

A method for averaging of NMR parameters by molecular dynamics (MD) has been derived from the method of statistical averaging in MD snapshots, benchmarked and applied to structurally dynamic interpretation of the 31 P NMR shift (δ31P ) in DNA phosphates. The method employs adiabatic dependence of an NMR parameter on selected geometric parameter(s) that is weighted by MD-calculated probability distribution(s) for the geometric parameter(s) (Ad-MD method). The usage of Ad-MD for polymers is computationally convenient when one pre-calculated structural dependence of an NMR parameter is employed for all chemically equivalent units differing only in dynamic behavior. The Ad-MD method is benchmarked against the statistical averaging method for δ31P in the model phosphates featuring distinctively different structures and dynamic behavior. The applicability of Ad-MD is illustrated by calculating 31 P NMR spectra in the Dickerson-Drew DNA dodecamer. δ31P was calculated with the B3LYP/IGLO-III/PCM(water) and the probability distributions for the torsion angles adjacent to the phosphorus atoms in the DNA phosphates were calculated using the OL15 force field.

Zobrazit více v PubMed

G. Harald, NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, WILEY-VCH, Weinheim 2013.

N. R. K. L. J. Berliner, Modern Techniques in Protein NMR, Springer, Boston, MA 2006.

B. Furtig, C. Richter, J. Wohnert, H. Schwalbe, Chembiochem 2003, 4(10), 936.

M. Dracinsky, P. Bour, J. Comput. Chem. 2012, 33(10), 1080.

M. Dracinsky, P. Hodgkinson, Crst. Eng. Comm. 2013, 15(43), 8705.

M. Dracinsky, P. Hodgkinson, Chem.-Eur. J. 2014, 20(8), 2201.

M. Dracinsky, P. Hodgkinson, RSC Adv. 2015, 5(16), 2300.

M. Dracinsky, M. Sala, B. Klepetarova, J. Sebera, J. Fukal, V. Holeckova, Y. Tanaka, R. Nencka, V. Sychrovsky, J. Phys. Chem. B 2016, 120(5), 915.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28(1), 235.

T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev. 1999, 99(1), 293.

Z. Chen, T. Heine, P. R. Schelyer, D. Sundholm, in Calculation of NMR and EPR Parameters (Eds: M. Kaupp, M. B, V. G. Malkin), WILEY-VCH Verlag, Weinheim 2004.

A. Victora, H. Moller, T. E. Exner, Nucleic Acids Res. 2014, 42, 22.

S. V. Fedorov, Y. Y. Rusakov, L. B. Krivdin, Magn. Reson. Chem. 2014, 52(11), 699.

V. Sychrovsky, L. Benda, A. Prokop, V. Blechta, J. Schraml, V. Spirko, J. Phys. Chem. A 2008, 112(23), 5167.

A. Cesari, A. Gil-Ley, G. Bussi, J. Chem. Theory Comput. 2016, 12(12), 6192.

S. S. Wijmenga, B. N. M. van Buuren, Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287.

M. Dracinsky, R. Pohl, in Annual Reports on NMR Spectroscopy, Vol. 82 (Ed: G. A. Webb) Elsevier, San Diego 2014, p. 59.

D. Gorenstein, Phosphorus-31 NMR: Principles and Applications, Elsevier, London 1984.

D. G. Gorenstein, Chem. Rev. 1994, 94(5), 1315.

V. Sychrovsky, J. Sponer, L. Trantirek, B. Schneider, J. Am. Chem. Soc. 2006, 128(21), 6823.

J. Abi-Ghanem, B. Heddi, N. Foloppe, B. Hartmann, Nucleic Acids Res. 2010, 38, 3.

D. G. Gorenstein, B. A. Luxon, NMR Spectroscopy, P-31, Academic Press Ltd-Elsevier Science Ltd, London, England 2017.

D. Svozil, J. Kalina, M. Omelka, B. Schneider, Nucleic Acids Res. 2008, 36(11), 3690.

B. Schneider, P. Bozikova, I. Necasova, P. Cech, D. Svozil, J. Cerny, Acta Crystallogr. Sect. D-Struct. Biol. 2018, 74, 52.

Y. Tian, M. Kayatta, K. Shultis, A. Gonzalez, L. J. Mueller, M. E. Hatcher, J. Phys. Chem. B 2009, 113(9), 2596.

B. Heddi, N. Foloppe, N. Bouchemal, E. Hantz, B. Hartmann, J. Am. Chem. Soc. 2006, 128(28), 9170.

K. Hart, N. Foloppe, C. M. Baker, E. J. Denning, L. Nilsson, A. D. MacKerell, J. Chem. Theory Comput. 2012, 8(1), 348.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117(19), 5179.

M. Zgarbova, F. J. Luque, J. Sponer, T. E. Cheatham, M. Otyepka, P. Jurecka, J. Chem. Theory Comput. 2013, 9(5), 2339.

M. Zgarbova, J. Sponer, M. Otyepka, T. E. Cheatham, R. Galindo-Murillo, P. Jurecka, J. Chem. Theory Comput. 2015, 11(12), 5723.

I. Ivani, P. D. Dans, A. Noy, A. Perez, I. Faustino, A. Hospital, J. Walther, P. Andrio, R. Goni, A. Balaceanu, G. Portella, F. Battistini, J. L. Gelpi, C. Gonzalez, M. Vendruscolo, C. A. Laughton, S. A. Harris, D. A. Case, M. Orozco, Nat. Methods 2016, 13(1), 55.

V. Sychrovsky, Z. Vokacova, J. Sponer, N. Spackova, B. Schneider, J. Phys. Chem. B 2006, 110(45), 894.

L. Benda, B. Schneider, V. Sychrovsky, J. Phys. Chem. A 2011, 115(11), 2385.

Z. Vokacova, F. M. Bickelhaupt, J. Sponer, V. Sychrovsky, J. Phys. Chem. A 2009, 113(29), 8379.

J. Precechtelova, M. L. Munzarova, P. Novak, V. Sklenar, J. Phys. Chem. B 2007, 111(10), 2658.

J. Precechtelova, P. Padrta, M. L. Munzarova, V. Sklenar, J. Phys. Chem. B 2008, 112(11), 3470.

L. Benda, Z. S. Vokacova, M. Straka, V. Sychrovsky, J. Phys. Chem. B 2012, 116(12), 3823.

J. Precechtelova, P. Novak, M. L. Munzarova, M. Kaupp, V. Sklenar, J. Am. Chem. Soc. 2010, 132(48), 139.

J. Precechtelova, M. L. Munzarova, J. Vaara, J. Novotny, M. Dracinsky, V. Sklenar, J. Chem. Theory Comput. 2013, 9(3), 1641.

C. van Wullen, Phys. Chem. Chem. Phys. 2000, 2(10), 2137.

J. Fukal, O. Pav, M. Budesinsky, J. Sebera, V. Sychrovsky, Phys. Chem. Chem. Phys. 2017, 19(47), 830.

J. Fukal, O. Pav, M. Budesinsky, I. Rosenberg, J. Sebera, V. Sychrovsky, Phys. Chem. Chem. Phys. 2019, 21(19), 9924.

Z. Vokacova, M. Budesinsky, I. Rosenberg, B. Schneider, J. Sponer, V. Sychrovsky, J. Phys. Chem. B 2009, 113(4), 1182.

A. D. Becke, J. Chem. Phys. 1993, 98(7), 5648.

C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37(2), 785.

S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58(8), 1200.

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98(45), 623.

P. C. Harihara, J. A. Pople, Theor. Chim. Acta 1973, 28(3), 213.

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72(1), 650.

M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, J. Chem. Phys. 1982, 77(7), 3654.

T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. Schleyer, J. Comput. Chem. 1983, 4(3), 294.

P. M. W. Gill, B. G. Johnson, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1992, 197(4-5), 499.

G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132(11), 15.

R. Ditchfield, Mol. Phys. 1974, 27(4), 789.

K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112(23), 8251.

J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104(14), 5497.

W. Kutzelnigg, U. F. M. S. The IGLO-method: Ab initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities. NMR - Basis Principles and Progress, 1990.

J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25(9), 1157.

J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2005, 26(1), 114.

C. I. Bayly, P. Cieplak, W. D. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97(40), 269.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79(2), 926.

J. Aqvist, J. Phys. Chem. 1990, 94(21), 8021.

M. Zgarbova, M. Otyepka, J. Sponer, F. Lankas, P. Jurecka, J. Chem. Theory Comput. 2014, 10(8), 3177.

J. Ott, F. Eckstein, Biochemistry 1985, 24(10), 2530.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...