The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques

. 2019 Apr ; 411 (10) : 1957-1977. [epub] 20190304

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30830245
Odkazy

PubMed 30830245
PubMed Central PMC6458998
DOI 10.1007/s00216-019-01615-6
PII: 10.1007/s00216-019-01615-6
Knihovny.cz E-zdroje

Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.

Zobrazit více v PubMed

Butte W, Heinzow B. Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol. 2002;175:1–46. PubMed

Laborie S, Moreau-Guigon E, Alliot F, Desportes A, Oziol L, Chevreuil M. A new analytical protocol for the determination of 62 endocrine-disrupting compounds in indoor air. Talanta. 2016;147:132–141. doi: 10.1016/j.talanta.2015.09.028. PubMed DOI

Loganathan SN, Kannan K. Occurrence of bisphenol A in indoor dust from two locations in the eastern United States and implications for human exposures. Arch Environ Contam Toxicol. 2011;61(1):68–73. doi: 10.1007/s00244-010-9634-y. PubMed DOI

Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol. 2012;46:9138–9145. doi: 10.1021/es302004w. PubMed DOI

Wang L, Liao C, Liu F, Wu Q, Guo Y, Moon HB, Nakata H, Kannan K. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries. Environ Sci Technol. 2012;46:11584–11593. doi: 10.1021/es303516u. PubMed DOI

Tran TM, Minh TB, Kumosani TA, Kannan K. Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: implications for exposure. Chemosphere. 2016;144:1553–1559. doi: 10.1016/j.chemosphere.2015.10.028. PubMed DOI

Larsson K, Lindh CH, Jonsson BA, Giovanoulis G, Bibi M, Bottai M, Bergstrom A, Berglund M. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ Int. 2017;102:114–124. doi: 10.1016/j.envint.2017.02.006. PubMed DOI

Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, Hagerhed-Engman L. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2004;112:1393–1397. doi: 10.1289/ehp.7187. PubMed DOI PMC

Samet JM, Marbury MC, Spengler JD. Health effects and sources of indoor air pollution. Part I. Am Rev Respir Dis. 1987;136:1486–1508. doi: 10.1164/ajrccm/136.6.1486. PubMed DOI

Samet JM, Marbury MC, Spengler JD. Health effects and sources of indoor air pollution. Part II. Am Rev Respir Dis. 1988;137:221–242. doi: 10.1164/ajrccm/137.1.221. PubMed DOI

Wormuth M, Scheringer M, Vollenweider M, Hungerbuhler K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006;26:803–824. doi: 10.1111/j.1539-6924.2006.00770.x. PubMed DOI

Wu N, Herrmann T, Paepke O, Tickner J, Hale R, Harvey LE, La GM, Mcclean MD, Webster TF. Human exposure to PBDEs: associations of PBDE body burdens with food consumption and house dust concentrations. Environ Sci Technol. 2007;41:1584–1589. doi: 10.1021/es0620282. PubMed DOI

Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ. 2009;43:170–181. doi: 10.1016/j.atmosenv.2008.09.025. PubMed DOI PMC

Veenaas C, Haglund P. Methodology for non-target screening of sewage sludge using comprehensive two-dimensional gas chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem. 2017;409:4867–4883. doi: 10.1007/s00216-017-0429-0. PubMed DOI PMC

Blum KM, Andersson PL, Renman G, Ahrens L, Gros M, Wiberg K, Haglund P. Non-target screening and prioritization of potentially persistent, bioaccumulating and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants. Sci Total Environ. 2017;575:265–275. doi: 10.1016/j.scitotenv.2016.09.135. PubMed DOI

Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibanez M, Portoles T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, Bados P, Bogialli S, Stipanicev D, Rostkowski P, Hollender J. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–6255. doi: 10.1007/s00216-015-8681-7. PubMed DOI

Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 2015;49:12333–12341. doi: 10.1021/acs.est.5b03454. PubMed DOI

Bletsou AA, Ferrero PG, Psoma AK, Aalizadeh R, Thomaidis NS. Development of a LC-HRMS workflow for suspect and non-target screening of contaminants of emerging concern in environmental water samples. Proceedings of Am Chem Soc fall meeting 2014; https://www.acs.org/content/acs/en/meetings/national-meeting/about/meetings-archive.html. Accessed 18 Feb 2019.

Ouyang XY, Weiss JM, de Boer J, Lamoree MH, Leonards PEG. Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. Chemosphere. 2017;166:431–437. doi: 10.1016/j.chemosphere.2016.09.107. PubMed DOI

Hilton DC, Jones RS, Sjodin A. A method for rapid, non-targeted screening for environmental contaminants in household dust. J Chromatogr A. 2010;1217:6851–6856. doi: 10.1016/j.chroma.2010.08.039. PubMed DOI

Moschet C, Anumol T, Lew BM, Bennett DH, Young TM. Household dust as a repository of chemical accumulation: new insights from a comprehensive high-resolution mass spectrometric study. Environ Sci Technol. 2018;52:2878–2887. doi: 10.1021/acs.est.7b05767. PubMed DOI PMC

Rager JE, Strynar MJ, Liang S, McMahen RL, Richard AM, Grulke CM, Wambaugh JF, Isaacs KK, Judson R, Williams AJ, Sobus JR. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environ Int. 2016;88:269–280. doi: 10.1016/j.envint.2015.12.008. PubMed DOI

Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI

Grosse S, Letzel T. User manual for STOFF-IDENT database. 2016. https://www.lfu.bayern.de/stoffident/stoffident-static-content/html/download/manual.pdf. Accessed 18 Feb 2019.

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8(3). 10.1186/s13321-016-0115-9. PubMed PMC

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI

Wolf S, Schmidt S, Muller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics. 2010;11:148. doi: 10.1186/1471-2105-11-148. PubMed DOI PMC

Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42(web server issue):W94–W99. doi: 10.1093/nar/gku436. PubMed DOI PMC

Aalizadeh R, Thomaidis NS, Bletsou AA, Gago-Ferrero P. Quantitative structure-retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. J Chem Inf Model. 2016;56:1384–1398. doi: 10.1021/acs.jcim.5b00752. PubMed DOI

Grosse S, Letzel T. User manual for FOR-IDENT database. 2017. https://water.for-ident.org/download/manual.pdf. Accessed 18 Feb 2019.

van Den Dool H, Kratz P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI

Persson J, Wang T, Hagberg J. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools. Sci Total Environ. 2018;628-629:159–168. doi: 10.1016/j.scitotenv.2018.02.053. PubMed DOI

Larsson K, de Wit CA, Sellstrom U, Sahlstrom L, Lindh CH, Berglund M. Brominated flame retardants and organophosphate esters in preschool dust and children’s hand wipes. Environ Sci Technol. 2018;52:4878–4888. doi: 10.1021/acs.est.8b00184. PubMed DOI

Zhou L, Hiltscher M, Puttmann W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. Indoor Air. 2017;27:1113–1127. doi: 10.1111/ina.12397. PubMed DOI

He R, Li Y, Xiang P, Li C, Zhou C, Zhang S, Cui X, Ma LQ. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: bioaccessibility and risk assessment. Chemosphere. 2016;150:528–535. doi: 10.1016/j.chemosphere.2015.10.087. PubMed DOI

de Boer J, Ballesteros-Gomez A, Leslie HA, Brandsma SH, Leonards PE. Flame retardants: dust - and not food - might be the risk. Chemosphere. 2016;150:461–464. doi: 10.1016/j.chemosphere.2015.12.124. PubMed DOI

Coelho SD, Sousa AC, Isobe T, Kim JW, Kunisue T, Nogueira AJ, Tanabe S. Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal. Sci Total Environ. 2016;569-570:442–449. doi: 10.1016/j.scitotenv.2016.06.137. PubMed DOI

van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI

Salis S, Testa C, Roncada P, Armorini S, Rubattu N, Ferrari A, Miniero R, Brambilla G. Occurrence of imidacloprid, carbendazim, and other biocides in Italian house dust: potential relevance for intakes in children and pets. J Environ Sci Health B. 2017;52:699–709. doi: 10.1080/03601234.2017.1331675. PubMed DOI

Balducci C, Perilli M, Romagnoli P, Cecinato A. New developments on emerging organic pollutants in the atmosphere. Environ Sci Pollut Res Int. 2012;19:1875–1884. doi: 10.1007/s11356-012-0815-2. PubMed DOI

Merel S, Snyder SA. Critical assessment of the ubiquitous occurrence and fate of the insect repellent N,N-diethyl-m-toluamide in water. Environ Int. 2016;96:98–117. doi: 10.1016/j.envint.2016.09.004. PubMed DOI

Bernhard M, Eubeler JP, Zok S, Knepper TP. Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater. Water Res. 2008;42:4791–4801. doi: 10.1016/j.watres.2008.08.028. PubMed DOI

Beens J, Blomberg J, Schoenmakers PJ. Proper tuning of comprehensive two-dimensional gas chromatography (GC×GC) to optimize the separation of complex oil fractions. J High Resolut Chromatogr. 2000;23:182–188. doi: 10.1002/(SICI)1521-4168(20000301)23:3<182::AID-JHRC182>3.0.CO;2-E. DOI

Friden UE, McLachlan MS, Berger U. Chlorinated paraffins in indoor air and dust: concentrations, congener patterns, and human exposure. Environ Int. 2011;37:1169–1174. doi: 10.1016/j.envint.2011.04.002. PubMed DOI

Korytár P, Parera J, Leonards PEG, Santos FJ, de Boer J, Brinkman UAT. Characterization of polychlorinated n-alkanes using comprehensive two-dimensional gas chromatography–electron-capture negative ionisation time-of-flight mass spectrometry. J Chromatogr A. 2005;1086:71–82. doi: 10.1016/j.chroma.2005.05.003. PubMed DOI

Portolés T, Mol JGJ, Sancho JV, Hernández F. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. J Chromatogr A. 2014;1339:145–153. doi: 10.1016/j.chroma.2014.03.001. PubMed DOI

Thurman EM, Ferrer I, Barcelo D. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides. Anal Chem. 2001;73:5441–5449. doi: 10.1021/ac010506f. PubMed DOI

Carolin H, Walter V. A non-targeted gas chromatography/electron capture negative ionization mass spectrometry selected ion monitoring screening method for polyhalogenated compounds in environmental samples. Rapid Commun Mass Spectrom. 2015;29:619–628. doi: 10.1002/rcm.7143. PubMed DOI

Zhang J, Kamstra JH, Ghorbanzadeh M, Weiss JM, Hamers T, Andersson PL. In silico approach to identify potential thyroid hormone disruptors among currently known dust contaminants and their metabolites. Environ Sci Technol. 2015;49:10099–10107. doi: 10.1021/acs.est.5b01742. PubMed DOI

Mercier F, Glorennec P, Thomas O, Bot BL. Organic contamination of settled house dust, a review for exposure assessment purposes. Environ Sci Technol. 2011;45:6716–6727. doi: 10.1021/es200925h. PubMed DOI

Phillips KA, Yau A, Favela KA, Isaacs KK, McEachran A, Grulke C, Richard AM, Williams AJ, Sobus JR, Thomas RS, Wambaugh JF. Suspect screening analysis of chemicals in consumer products. Environ Sci Technol. 2018;52:3125–3135. doi: 10.1021/acs.est.7b04781. PubMed DOI PMC

Buser H-R. Brominated and brominated/chlorinated dibenzodioxins and dibenzofurans: potential environmental contaminants. Chemosphere. 1987;16:713–732. doi: 10.1016/0045-6535(87)90007-5. DOI

Veenaas C, Haglund P. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J Chromatogr A. 2018;1536:67–74. doi: 10.1016/j.chroma.2017.08.062. PubMed DOI

Veenaas C, Linusson A, Haglund P. Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants. Anal Bioanal Chem, on-line 20 October 2018. 10.1007/s00216-018-1415-x. PubMed PMC

Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ Sci Technol. 2017;51:5357–5359. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC

Sobus JR, Wambaugh JF, Isaacs KK, Williams AJ, McEachran AD, Richard AM, Grulke CM, Ulrich EM, Rager JE, Strynar MJ, Newton SR. Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. J Expo Sci Environ Epidemiol. 2018;28:411–426. doi: 10.1038/s41370-017-0012-y. PubMed DOI PMC

McEachran AD, Sobus JR, Williams AJ. Identifying known unknowns using the US EPA’s CompTox Chemistry Dashboard. Anal Bioanal Chem. 2017;409:1729–1735. doi: 10.1007/s00216-016-0139-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...