The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30830245
PubMed Central
PMC6458998
DOI
10.1007/s00216-019-01615-6
PII: 10.1007/s00216-019-01615-6
Knihovny.cz E-zdroje
- Klíčová slova
- Collaborative trial, Complementary analytical techniques, House dust, Mass spectrometry, Suspect and nontarget analysis,
- Publikační typ
- časopisecké články MeSH
Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.
Department of Chemistry University of Athens 157 71 Athens Greece
Environment and Climate Change Canada North Vancouver V7H 1B1 Canada
Environment and Climate Change Canada Ottawa ON K1V 1C7 Canada
Environmental Institute 972 41 Kos Slovak Republic
INERIS Parc Technologique ALATA 60550 Verneuil en Halatte France
IVL Swedish Environmental Research Institute 114 27 Stockholm Sweden
National Institute for Environmental Studies Tsukuba 305 8506 Japan
NILU Norwegian Institute for Air Research 2027 Kjeller Norway
Ontario Ministry of Environment and Climate Change Etobicoke ON M9P 3V6 Canada
Research Centre for Toxic Compounds in the Environment 611 37 Brno Czech Republic
Research Institute for Pesticides and Water University Jaume 1 12071 Castelló Spain
Swedish Chemicals Agency 172 67 Sundbyberg Sweden
Technical University of Munich 85748 Garching Germany
Toxicological Center University of Antwerp 2610 Wilrijk Belgium
Umeå University 90187 Umeå Sweden
University of Bordeaux 33405 Talence Cedex France
University of California Davis CA 95616 USA
Zobrazit více v PubMed
Butte W, Heinzow B. Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol. 2002;175:1–46. PubMed
Laborie S, Moreau-Guigon E, Alliot F, Desportes A, Oziol L, Chevreuil M. A new analytical protocol for the determination of 62 endocrine-disrupting compounds in indoor air. Talanta. 2016;147:132–141. doi: 10.1016/j.talanta.2015.09.028. PubMed DOI
Loganathan SN, Kannan K. Occurrence of bisphenol A in indoor dust from two locations in the eastern United States and implications for human exposures. Arch Environ Contam Toxicol. 2011;61(1):68–73. doi: 10.1007/s00244-010-9634-y. PubMed DOI
Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol. 2012;46:9138–9145. doi: 10.1021/es302004w. PubMed DOI
Wang L, Liao C, Liu F, Wu Q, Guo Y, Moon HB, Nakata H, Kannan K. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries. Environ Sci Technol. 2012;46:11584–11593. doi: 10.1021/es303516u. PubMed DOI
Tran TM, Minh TB, Kumosani TA, Kannan K. Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: implications for exposure. Chemosphere. 2016;144:1553–1559. doi: 10.1016/j.chemosphere.2015.10.028. PubMed DOI
Larsson K, Lindh CH, Jonsson BA, Giovanoulis G, Bibi M, Bottai M, Bergstrom A, Berglund M. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ Int. 2017;102:114–124. doi: 10.1016/j.envint.2017.02.006. PubMed DOI
Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, Hagerhed-Engman L. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2004;112:1393–1397. doi: 10.1289/ehp.7187. PubMed DOI PMC
Samet JM, Marbury MC, Spengler JD. Health effects and sources of indoor air pollution. Part I. Am Rev Respir Dis. 1987;136:1486–1508. doi: 10.1164/ajrccm/136.6.1486. PubMed DOI
Samet JM, Marbury MC, Spengler JD. Health effects and sources of indoor air pollution. Part II. Am Rev Respir Dis. 1988;137:221–242. doi: 10.1164/ajrccm/137.1.221. PubMed DOI
Wormuth M, Scheringer M, Vollenweider M, Hungerbuhler K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006;26:803–824. doi: 10.1111/j.1539-6924.2006.00770.x. PubMed DOI
Wu N, Herrmann T, Paepke O, Tickner J, Hale R, Harvey LE, La GM, Mcclean MD, Webster TF. Human exposure to PBDEs: associations of PBDE body burdens with food consumption and house dust concentrations. Environ Sci Technol. 2007;41:1584–1589. doi: 10.1021/es0620282. PubMed DOI
Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ. 2009;43:170–181. doi: 10.1016/j.atmosenv.2008.09.025. PubMed DOI PMC
Veenaas C, Haglund P. Methodology for non-target screening of sewage sludge using comprehensive two-dimensional gas chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem. 2017;409:4867–4883. doi: 10.1007/s00216-017-0429-0. PubMed DOI PMC
Blum KM, Andersson PL, Renman G, Ahrens L, Gros M, Wiberg K, Haglund P. Non-target screening and prioritization of potentially persistent, bioaccumulating and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants. Sci Total Environ. 2017;575:265–275. doi: 10.1016/j.scitotenv.2016.09.135. PubMed DOI
Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibanez M, Portoles T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, Bados P, Bogialli S, Stipanicev D, Rostkowski P, Hollender J. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–6255. doi: 10.1007/s00216-015-8681-7. PubMed DOI
Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 2015;49:12333–12341. doi: 10.1021/acs.est.5b03454. PubMed DOI
Bletsou AA, Ferrero PG, Psoma AK, Aalizadeh R, Thomaidis NS. Development of a LC-HRMS workflow for suspect and non-target screening of contaminants of emerging concern in environmental water samples. Proceedings of Am Chem Soc fall meeting 2014; https://www.acs.org/content/acs/en/meetings/national-meeting/about/meetings-archive.html. Accessed 18 Feb 2019.
Ouyang XY, Weiss JM, de Boer J, Lamoree MH, Leonards PEG. Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. Chemosphere. 2017;166:431–437. doi: 10.1016/j.chemosphere.2016.09.107. PubMed DOI
Hilton DC, Jones RS, Sjodin A. A method for rapid, non-targeted screening for environmental contaminants in household dust. J Chromatogr A. 2010;1217:6851–6856. doi: 10.1016/j.chroma.2010.08.039. PubMed DOI
Moschet C, Anumol T, Lew BM, Bennett DH, Young TM. Household dust as a repository of chemical accumulation: new insights from a comprehensive high-resolution mass spectrometric study. Environ Sci Technol. 2018;52:2878–2887. doi: 10.1021/acs.est.7b05767. PubMed DOI PMC
Rager JE, Strynar MJ, Liang S, McMahen RL, Richard AM, Grulke CM, Wambaugh JF, Isaacs KK, Judson R, Williams AJ, Sobus JR. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environ Int. 2016;88:269–280. doi: 10.1016/j.envint.2015.12.008. PubMed DOI
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI
Grosse S, Letzel T. User manual for STOFF-IDENT database. 2016. https://www.lfu.bayern.de/stoffident/stoffident-static-content/html/download/manual.pdf. Accessed 18 Feb 2019.
Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8(3). 10.1186/s13321-016-0115-9. PubMed PMC
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI
Wolf S, Schmidt S, Muller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics. 2010;11:148. doi: 10.1186/1471-2105-11-148. PubMed DOI PMC
Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42(web server issue):W94–W99. doi: 10.1093/nar/gku436. PubMed DOI PMC
Aalizadeh R, Thomaidis NS, Bletsou AA, Gago-Ferrero P. Quantitative structure-retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. J Chem Inf Model. 2016;56:1384–1398. doi: 10.1021/acs.jcim.5b00752. PubMed DOI
Grosse S, Letzel T. User manual for FOR-IDENT database. 2017. https://water.for-ident.org/download/manual.pdf. Accessed 18 Feb 2019.
van Den Dool H, Kratz P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI
Persson J, Wang T, Hagberg J. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools. Sci Total Environ. 2018;628-629:159–168. doi: 10.1016/j.scitotenv.2018.02.053. PubMed DOI
Larsson K, de Wit CA, Sellstrom U, Sahlstrom L, Lindh CH, Berglund M. Brominated flame retardants and organophosphate esters in preschool dust and children’s hand wipes. Environ Sci Technol. 2018;52:4878–4888. doi: 10.1021/acs.est.8b00184. PubMed DOI
Zhou L, Hiltscher M, Puttmann W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. Indoor Air. 2017;27:1113–1127. doi: 10.1111/ina.12397. PubMed DOI
He R, Li Y, Xiang P, Li C, Zhou C, Zhang S, Cui X, Ma LQ. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: bioaccessibility and risk assessment. Chemosphere. 2016;150:528–535. doi: 10.1016/j.chemosphere.2015.10.087. PubMed DOI
de Boer J, Ballesteros-Gomez A, Leslie HA, Brandsma SH, Leonards PE. Flame retardants: dust - and not food - might be the risk. Chemosphere. 2016;150:461–464. doi: 10.1016/j.chemosphere.2015.12.124. PubMed DOI
Coelho SD, Sousa AC, Isobe T, Kim JW, Kunisue T, Nogueira AJ, Tanabe S. Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal. Sci Total Environ. 2016;569-570:442–449. doi: 10.1016/j.scitotenv.2016.06.137. PubMed DOI
van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI
Salis S, Testa C, Roncada P, Armorini S, Rubattu N, Ferrari A, Miniero R, Brambilla G. Occurrence of imidacloprid, carbendazim, and other biocides in Italian house dust: potential relevance for intakes in children and pets. J Environ Sci Health B. 2017;52:699–709. doi: 10.1080/03601234.2017.1331675. PubMed DOI
Balducci C, Perilli M, Romagnoli P, Cecinato A. New developments on emerging organic pollutants in the atmosphere. Environ Sci Pollut Res Int. 2012;19:1875–1884. doi: 10.1007/s11356-012-0815-2. PubMed DOI
Merel S, Snyder SA. Critical assessment of the ubiquitous occurrence and fate of the insect repellent N,N-diethyl-m-toluamide in water. Environ Int. 2016;96:98–117. doi: 10.1016/j.envint.2016.09.004. PubMed DOI
Bernhard M, Eubeler JP, Zok S, Knepper TP. Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater. Water Res. 2008;42:4791–4801. doi: 10.1016/j.watres.2008.08.028. PubMed DOI
Beens J, Blomberg J, Schoenmakers PJ. Proper tuning of comprehensive two-dimensional gas chromatography (GC×GC) to optimize the separation of complex oil fractions. J High Resolut Chromatogr. 2000;23:182–188. doi: 10.1002/(SICI)1521-4168(20000301)23:3<182::AID-JHRC182>3.0.CO;2-E. DOI
Friden UE, McLachlan MS, Berger U. Chlorinated paraffins in indoor air and dust: concentrations, congener patterns, and human exposure. Environ Int. 2011;37:1169–1174. doi: 10.1016/j.envint.2011.04.002. PubMed DOI
Korytár P, Parera J, Leonards PEG, Santos FJ, de Boer J, Brinkman UAT. Characterization of polychlorinated n-alkanes using comprehensive two-dimensional gas chromatography–electron-capture negative ionisation time-of-flight mass spectrometry. J Chromatogr A. 2005;1086:71–82. doi: 10.1016/j.chroma.2005.05.003. PubMed DOI
Portolés T, Mol JGJ, Sancho JV, Hernández F. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. J Chromatogr A. 2014;1339:145–153. doi: 10.1016/j.chroma.2014.03.001. PubMed DOI
Thurman EM, Ferrer I, Barcelo D. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides. Anal Chem. 2001;73:5441–5449. doi: 10.1021/ac010506f. PubMed DOI
Carolin H, Walter V. A non-targeted gas chromatography/electron capture negative ionization mass spectrometry selected ion monitoring screening method for polyhalogenated compounds in environmental samples. Rapid Commun Mass Spectrom. 2015;29:619–628. doi: 10.1002/rcm.7143. PubMed DOI
Zhang J, Kamstra JH, Ghorbanzadeh M, Weiss JM, Hamers T, Andersson PL. In silico approach to identify potential thyroid hormone disruptors among currently known dust contaminants and their metabolites. Environ Sci Technol. 2015;49:10099–10107. doi: 10.1021/acs.est.5b01742. PubMed DOI
Mercier F, Glorennec P, Thomas O, Bot BL. Organic contamination of settled house dust, a review for exposure assessment purposes. Environ Sci Technol. 2011;45:6716–6727. doi: 10.1021/es200925h. PubMed DOI
Phillips KA, Yau A, Favela KA, Isaacs KK, McEachran A, Grulke C, Richard AM, Williams AJ, Sobus JR, Thomas RS, Wambaugh JF. Suspect screening analysis of chemicals in consumer products. Environ Sci Technol. 2018;52:3125–3135. doi: 10.1021/acs.est.7b04781. PubMed DOI PMC
Buser H-R. Brominated and brominated/chlorinated dibenzodioxins and dibenzofurans: potential environmental contaminants. Chemosphere. 1987;16:713–732. doi: 10.1016/0045-6535(87)90007-5. DOI
Veenaas C, Haglund P. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J Chromatogr A. 2018;1536:67–74. doi: 10.1016/j.chroma.2017.08.062. PubMed DOI
Veenaas C, Linusson A, Haglund P. Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants. Anal Bioanal Chem, on-line 20 October 2018. 10.1007/s00216-018-1415-x. PubMed PMC
Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ Sci Technol. 2017;51:5357–5359. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC
Sobus JR, Wambaugh JF, Isaacs KK, Williams AJ, McEachran AD, Richard AM, Grulke CM, Ulrich EM, Rager JE, Strynar MJ, Newton SR. Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. J Expo Sci Environ Epidemiol. 2018;28:411–426. doi: 10.1038/s41370-017-0012-y. PubMed DOI PMC
McEachran AD, Sobus JR, Williams AJ. Identifying known unknowns using the US EPA’s CompTox Chemistry Dashboard. Anal Bioanal Chem. 2017;409:1729–1735. doi: 10.1007/s00216-016-0139-z. PubMed DOI
An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry