• This record comes from PubMed

The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

. 2022 ; 34 (1) : 104. [epub] 20221021

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
001 World Health Organization - International
R01 GM092218 NIGMS NIH HHS - United States
R03 CA222452 NCI NIH HHS - United States
T32 GM065086 NIGMS NIH HHS - United States

BACKGROUND: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. RESULTS: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). CONCLUSIONS: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

Agilent Technologies Inc 5301 Stevens Creek Blvd Santa Clara CA 95051 USA

Agriculture and Agri Food Canada Agriculture et Agroalimentaire Canada 1391 Sandford Street London ON N5V 4T3 Canada

Analytisches Forschungsinstitut Für Non Target Screening GmbH Am Mittleren Moos 48 86167 Augsburg Germany

Bavarian Environment Agency 86179 Augsburg Germany

Biosfer Teslab Reus Spain

Chemical Contamination of Marine Ecosystems Rue de l'Ile d'Yeu BP 21105 44311 Cedex 3 Nantes France

Computational Chemistry and Cheminformatics Branch United States Environmental Protection Agency 109 T W Alexander Drive Research Triangle Park NC 27711 USA

Corteva Agriscience Indianapolis IN USA

Department Environment and Health Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam The Netherlands

Department of Bioinformatics BiGCaT NUTRIM Maastricht University Maastricht The Netherlands

Department of Chemistry Center for Innovative Technology Vanderbilt Ingram Cancer Center Vanderbilt Institute of Chemical Biology Vanderbilt Institute for Integrative Biosystems Research and Education Vanderbilt University Nashville TN 37235 USA

Department of Chemistry Chemical Biological Centre Umeå University Linnaeus Väg 6 901 87 Umeå Sweden

Department of Chemistry Norwegian University of Science and Technology 7491 Trondheim Norway

Eawag Swiss Federal Institute for Aquatic Science and Technology Überlandstrasse 133 8600 Dübendorf Switzerland

Environment Agency Horizon House Deanery Road Bristol BS1 5AH UK

Environmental and Public Health Analytical Chemistry Research Institute for Pesticides and Water University Jaume 1 Castelló Spain

Environmental Institute Okružná 784 42 972 41 Koš Slovak Republic

Faculty of Chemical and Food Technology Institute of Information Engineering Automation and Mathematics Slovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic

Food Packaging Forum Foundation Staffelstrasse 10 8045 Zurich Switzerland

Fraunhofer Institute for Molecular Biology and Applied Ecology Schmallenberg Germany

German Environment Agency Wörlitzer Platz 1 Dessau Roßlau Germany

Hope College Holland MI 49422 USA

INERIS National Institute for Environment and Industrial Risks Verneuil en Halatte France

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands

Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands

Institute of Biogeochemistry and Pollutant Dynamics ETH Zurich 8092 Zurich Switzerland

Institute of Ecology Evolution and Diversity Goethe University Frankfurt Am Main Germany

Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center Barcelona Spain

Institute of Food Safety and Health College of Public Health National Taiwan University 17 Xuzhou Rd Zhongzheng Dist Taipei Taiwan

Institute of Health Research Pere Virgili Tarragona Spain

Institute of Legal Medicine and Core Facility Metabolomics Medical University of Innsbruck Muellerstrasse 44 Innsbruck Austria

Laboratory for Operation Control and Research Zweckverband Landeswasserversorgung Am Spitzigen Berg 1 89129 Langenau Germany

Laboratory of Analytical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Zografou 15771 Athens Greece

Leidos Research Triangle Park NC USA

Luxembourg Centre for Systems Biomedicine University of Luxembourg 6 Avenue du Swing 4367 Belvaux Luxembourg

Mass Spec Interpretation Services 3612 Hemlock Park Drive Kingsport TN 37663 USA

National Center for Biotechnology Information National Library of Medicine National Institutes of Health 8600 Rockville Pike Bethesda MD 20894 USA

NILU Norwegian Institute for Air Research Kjeller Norway

Norwegian Geotechnical Institute Ullevål Stadion P O Box 3930 0806 Oslo Norway

Nutrition and Metabolism Branch International Agency for Research On Cancer 150 Cours Albert Thomas 69372 Lyon Cedex 08 France

Oniris INRAE LABERCA 44307 Nantes France

Queensland Alliance for Environmental Health Sciences The University of Queensland Woolloongabba QLD 4102 Australia

RECETOX Faculty of Science Masaryk University Kotlářská 2 Brno Czech Republic

Science for Life Laboratory Department of Environmental Science Stockholm University 10691 Stockholm Sweden

Section for Environmental Chemistry and Physics Plant and Environmental Sciences University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark

State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco Environmental Sciences Chinese Academy of Sciences No 18 Shuangqing Road Haidian District Beijing 100086 China

Swedish Chemicals Agency P O Box 2 172 13 Sundbyberg Sweden

Swedish University of Agricultural Sciences Uppsala Sweden

Technologies for Water Management and Treatment Research Group Department of Civil Engineering University of Granada Campus de Fuentenueva S N 18071 Granada Spain

Technology and Society Laboratory Empa Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St Gallen Switzerland

Thermo Fisher Scientific Dornierstrasse 4 82110 Germering Germany

Toxicological Centre University of Antwerp Antwerp Belgium

UFZ Helmholtz Centre for Environmental Research Leipzig Germany

University of Alberta Edmonton AB T6G 2G3 Canada

University of California Berkeley CA USA

University Rovira i Virgili Tarragona Spain

Van't Hoff Institute for Molecular Sciences University of Amsterdam P O Box 94157 Amsterdam 1090 GD The Netherlands

Water Research Institute Nábr Arm Gen L Svobodu 5 81249 Bratislava Slovak Republic

See more in PubMed

Krauss M, Singer H, Hollender J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397:943–951. doi: 10.1007/s00216-010-3608-9. PubMed DOI

Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol. 2017;51:11505–11512. doi: 10.1021/acs.est.7b02184. PubMed DOI

Schymanski EL, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI

Schymanski EL, Singer HP, Slobodnik J, et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–6255. doi: 10.1007/s00216-015-8681-7. PubMed DOI

Dulio V, van Bavel B, Brorström-Lundén E, et al. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ Sci Eur. 2018;30:5. doi: 10.1186/s12302-018-0135-3. PubMed DOI PMC

Rostkowski P, Haglund P, Aalizadeh R, et al. The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem. 2019;411:1957–1977. doi: 10.1007/s00216-019-01615-6. PubMed DOI PMC

Schulze B, van Herwerden D, Allan I, et al. Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Sci Data. 2021;8:223. doi: 10.1038/s41597-021-01002-w. PubMed DOI PMC

NORMAN Association (2022) NORMAN Interlaboratory Studies Website. https://www.norman-network.com/?q=interlab-studies. Accessed 8 Jul 2022

Pourchet M, Debrauwer L, Klanova J, et al. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonisation issues. Environ Int. 2020;139:105545. doi: 10.1016/j.envint.2020.105545. PubMed DOI

Grashow R, Bessonneau V, Gerona RR, et al. Integrating exposure knowledge and serum suspect screening as a new approach to biomonitoring: an application in firefighters and office workers. Environ Sci Technol. 2020;54:4344–4355. doi: 10.1021/acs.est.9b04579. PubMed DOI PMC

Brack W, Bakker J, de Deckere E, et al. MODELKEY. Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity (5 pp) Env Sci Poll Res Int. 2005;12:252–256. doi: 10.1065/espr2005.08.286. PubMed DOI

Moschet C, Piazzoli A, Singer H, Hollender J. Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry. Anal Chem. 2013;85:10312–10320. doi: 10.1021/ac4021598. PubMed DOI

Singer HP, Wössner AE, McArdell CS, Fenner K. Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environ Sci Technol. 2016;50:6698–6707. doi: 10.1021/acs.est.5b03332. PubMed DOI

Schymanski EL, Singer HP, Longrée P, et al. Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol. 2014;48:1811–1818. doi: 10.1021/es4044374. PubMed DOI

Sjerps RMA, Brunner AM, Fujita Y, et al. Clustering and prioritization to design a risk-based monitoring program in groundwater sources for drinking water. Environ Sci Eur. 2021;33:32. doi: 10.1186/s12302-021-00470-6. DOI

Brunner AM, Dingemans MML, Baken KA, van Wezel AP. Prioritizing anthropogenic chemicals in drinking water and sources through combined use of mass spectrometry and ToxCast toxicity data. J Hazard Mater. 2019;364:332–338. doi: 10.1016/j.jhazmat.2018.10.044. PubMed DOI

Letzel T, Bayer A, Schulz W, et al. LC–MS screening techniques for wastewater analysis and analytical data handling strategies: sartans and their transformation products as an example. Chemosphere. 2015;137:198–206. doi: 10.1016/j.chemosphere.2015.06.083. PubMed DOI

Peter Suber (2015) Open Access Overview (definition, introduction). http://legacy.earlham.edu/~peters/fos/overview.htm. Accessed 3 Jul 2021

Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–D1395. doi: 10.1093/nar/gkaa971. PubMed DOI PMC

Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ. 2010;87:1123–1124. doi: 10.1021/ed100697w. DOI

Williams AJ, Grulke CM, Edwards J, et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Cheminform. 2017;9:61. doi: 10.1186/s13321-017-0247-6. PubMed DOI PMC

GO FAIR (2021) FAIR Principles. https://www.go-fair.org/fair-principles/. Accessed 23 Mar 2021

Wilkinson MD, Dumontier M, IjJ A, et al. Comment: the FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:1–9. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Schymanski EL, Bolton EE (2022) FAIR-ifying the exposome journal: templates for chemical structures and transformations. Exposome 2:osab006. 10.1093/exposome/osab006

European Chemicals Agency (ECHA) (2022) European Chemicals Agency (ECHA). https://www.echa.europa.eu/. Accessed 10 Jul 2022

European Food Safety Authority (EFSA) (2022) European Food Safety Authority (EFSA). https://www.efsa.europa.eu/en. Accessed 10 Jul 2022

European Commission (Joint Research Centre) (2022) Information Platform for Chemical Monitoring (IPCHEM). https://ipchem.jrc.ec.europa.eu/. Accessed 10 Jul 2022

Anses, European Commission (2022) European Partnership for the Assessment of Risks from Chemicals (PARC) - Anses Website. In: Anses-Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (French Agency for Food, Environmental and Occupational Health & Safety). https://www.anses.fr/en/content/european-partnership-assessment-risks-chemicals-parc. Accessed 29 May 2022

Dulio V, Koschorreck J, van Bavel B, et al. The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! Environ Sci Eur. 2020;32:100. doi: 10.1186/s12302-020-00375-w. DOI

Masaryk University (2022) Environmental Exposure Assessment Research Infrastructure (EIRENE). https://www.eirene-ri.eu/. Accessed 10 Jul 2022

Slobodnik J, Hollender J, Schulze T, et al. Establish data infrastructure to compile and exchange environmental screening data on a European scale. Environ Sci Eur. 2019;31:65. doi: 10.1186/s12302-019-0237-6. DOI

NORMAN Association (2022) NORMAN Suspect List Exchange (NORMAN-SLE) Website. https://www.norman-network.com/nds/SLE/. Accessed 29 Apr 2022

Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model. 1988;28:31–36. doi: 10.1021/ci00057a005. DOI

Heller S, McNaught A, Stein S, et al. InChI—the worldwide chemical structure identifier standard. J Cheminform. 2013;5:7. doi: 10.1186/1758-2946-5-7. PubMed DOI PMC

American Chemical Society (2022) CAS REGISTRY—the CAS substance collection. https://www.cas.org/cas-data/cas-registry. Accessed 2 Feb 2022

European Chemicals Agency (ECHA) (2022) EC inventory. https://www.echa.europa.eu/information-on-chemicals/ec-inventory. Accessed 20 Jun 2022

Schymanski EL, Bolton EE. FAIR chemical structures in the Journal of Cheminformatics. J Cheminform. 2021;13:50. doi: 10.1186/s13321-021-00520-4. PubMed DOI PMC

Stravs MA, Schymanski EL, Singer HP, Hollender J. Automatic recalibration and processing of tandem mass spectra using formula annotation: recalibration and processing of MS/MS spectra. J Mass Spectrom. 2013;48:89–99. doi: 10.1002/jms.3131. PubMed DOI

Schymanski E (2022) RChemMass. https://github.com/schymane/RChemMass. Accessed 27 Apr 2022

NCBI/NLM/NIH (2022) PubChem Identifier Exchange. https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi. Accessed 23 Jul 2022

United States Environmental Protection Agency (2022) CompTox Batch Search. https://comptox.epa.gov/dashboard/dsstoxdb/batch_search. Accessed 23 Jul 2022

O’Boyle NM, Banck M, James CA, et al. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Willighagen EL, Mayfield JW, Alvarsson J, et al. The Chemistry Development Kit (CDK) v20: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform. 2017;9:33. doi: 10.1186/s13321-017-0220-4. PubMed DOI PMC

Ruttkies C, Schymanski EL, Wolf S, et al. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3. doi: 10.1186/s13321-016-0115-9. PubMed DOI PMC

Trier X, Lunderberg D. 2015. S9 | PFASTRIER|PFAS Suspect List: fluorinated substances. Zenodo. DOI

Liu Y, D’Agostino L, Schymanski E, Martin J (2019) S46|PFASNTREV19|List of PFAS reported in Non-Target HRMS Studies (Liu et al 2019). Zenodo. 10.5281/zenodo.2656744

Liu Y, D’Agostino LA, Qu G, et al. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl Substances (PFASs) in environmental and human samples. TrAC Trends Anal Chem. 2019;121:115420. doi: 10.1016/j.trac.2019.02.021. DOI

Little J. 2017. S18 | TSCASURF|TSCA surfactants. Zenodo. DOI

Gago-Ferrero P, Schymanski EL, Bletsou AA, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 2015;49:12333–12341. doi: 10.1021/acs.est.5b03454. PubMed DOI

Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ Sci Technol. 2017;51:5357–5359. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC

Lai A, Clark AM, Escher BI, et al. The next frontier of environmental unknowns: substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) Environ Sci Technol. 2022;56:7448–7466. doi: 10.1021/acs.est.2c00321. PubMed DOI PMC

European Organization For Nuclear Research, OpenAIRE, CERN (2013) Zenodo. https://www.zenodo.org/. Accessed 23 Jul 2022

NORMAN Association (2022) NORMAN Suspect List Exchange: Zenodo Community. https://zenodo.org/communities/norman-sle/. Accessed 23 Jul 2022

Arp HPH, Hale SE, Schliebner I, Neumann M. 2022. S36|UBAPMT|Prioritised PMT/vPvM substances in the REACH registration database. Zenodo. DOI

Grulke CM, Williams AJ, Thillanadarajah I, Richard AM. EPA’s DSSTox database: history of development of a curated chemistry resource supporting computational toxicology research. Computat Toxicol. 2019;12:100096. doi: 10.1016/j.comtox.2019.100096. PubMed DOI PMC

Schymanski EL, Williams AJ. 2018. S24|HUMANNEUROTOX|List of Human Neurotoxins. Zenodo. DOI

Baker NC, Schymanski EL, Williams AJ. 2019. S37|LITMINEDNEURO|Neurotoxicants from literature mining PubMed. Zenodo. DOI

Baker NC, Schymanski EL, Williams AJ. 2019. S43|NEUROTOXINS|Neurotoxicants Collection from Public Resources. Zenodo. DOI

Schymanski EL, Baker NC, Williams AJ, et al. Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environ Sci Processes Impacts. 2019;21:1426–1445. doi: 10.1039/C9EM00068B. PubMed DOI

Wang Z. 2018. S25|OECDPFAS|List of PFAS from the OECD. Zenodo. DOI

OECD (2018) Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): Summary report on updating the OECD 2007 list of per- and polyfluorinated substances (PFASs). OECD Report ENV/JM/MONO(2018)7:24

US EPA, OECD (2020) CompTox Chemicals Dashboard|PFASOECD Chemicals. https://comptox.epa.gov/dashboard/chemical-lists/PFASOECD. Accessed 29 Dec 2021

Williams A. 2019. S45|SYNTHCANNAB|Synthetic Cannabinoids from CompTox. Zenodo. DOI

Epa US, Williams A, Schymanski E. 2019. S58|PSCYHOCANNAB|NPS and Synthetic Cannabinoids from CompTox. Zenodo. DOI

Lowe CN, Williams AJ. Enabling high-throughput searches for multiple chemical data using the U.S.-EPA CompTox Chemicals Dashboard. J Chem Inf Model. 2021;61:565–570. doi: 10.1021/acs.jcim.0c01273. PubMed DOI PMC

Schymanski EL, Zhang J, Bolton EE (2022) NORMAN-SLE/PubChem Deposition Mapping File. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/blob/master/deposition/NORMAN_SLE_mappings.txt. Accessed 30 Apr 2022

NCBI/NLM/NIH (2022) PubChem Documentation. https://pubchemdocs.ncbi.nlm.nih.gov/about. Accessed 1 May 2022

Fischer S. 2017. S17|KEMIMARKET|KEMI Market List. Zenodo. DOI

Association NORMAN, Aalizadeh R, Alygizakis N, 2018. S0|SUSDAT|Merged NORMAN Suspect List: SusDat. Zenodo. DOI

Schymanski EL, Li Q, Bolton EE (2022) NORMAN-SLE / PubChem Synonym File. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/blob/master/deposition/SLE_Synonyms.csv. Accessed 30 Apr 2022

Schymanski E, Baesu A, Chirsir P. 2022. S74|REFTPS|Transformation Products and Reactions from Literature. Zenodo. DOI

Chirsir P, Schymanski E. 2022. S96|ECIPFAS|Updatable List to add PFAS Structures to Public Resources from ECI (UniLu) Zenodo. DOI

NORMAN Association, NCBI/NLM/NIH (2022) NORMAN-SLE Data Source in PubChem. https://pubchem.ncbi.nlm.nih.gov/source/23819. Accessed 23 Jul 2022

Zhang J, Schymanski EL, Thiessen PA, Bolton EE (2022) NORMAN Suspect List Exchange Tree on PubChem Classification Browser. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101. Accessed 30 Apr 2022

Schymanski EL, Zhang J, Bolton EE (2022) NORMAN-SLE / PubChem Classification Mapping File. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/blob/master/deposition/NORMAN_SLE_classification.txt. Accessed 30 Apr 2022

Schymanski EL, LCSB-ECI, NCBI/NLM/NIH (2022) LCSB-ECI/PubChem Documentation. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem-docs

Schymanski EL (2022) Converting NORMAN-SLE lists to SDF via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/docs/SLEtoSDF.md. Accessed 10 Jul 2022

NCBI/NLM/NIH (2022) PubChem Table of Contents Classification Browser. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=72. Accessed 23 Jul 2022

Kim S, Cheng T, He S, et al. PubChem protein, gene, pathway, and taxonomy data collections: bridging biology and chemistry through target-centric views of PubChem data. J Mol Biol. 2022;434:167514. doi: 10.1016/j.jmb.2022.167514. PubMed DOI PMC

Schymanski EL, Chirsir P, LCSB-ECI, et al (2022) PubChem Annotation Content. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/tree/master/annotations. Accessed 1 May 2022

Schymanski EL (2022) NORMAN-SLE List Overview 2022–05–04 (CSV). In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/NORMAN-SLE_List_Overview_20220504.csv. Accessed 30 May 2022

Schymanski EL (2022) NORMAN-SLE Website Overview 2022–05–30 (DOCX). In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/web/NORMAN-SLE_Website_Overview_20220530.docx. Accessed 30 May 2022

NORMAN Association (2022) NORMAN Substance Database (NORMAN SusDat) Website. https://www.norman-network.com/nds/susdat/. Accessed 29 Apr 2022

Meijer J, Lamoree M, Hamers T, et al. An annotation database for chemicals of emerging concern in exposome research. Environ Int. 2021;152:106511. doi: 10.1016/j.envint.2021.106511. PubMed DOI

Meijer J, Lamoree M, Hamers T, 2020. S71|CECSCREEN|HBM4EU CECscreen: screening list for chemicals of emerging concern plus metadata and predicted phase 1 metabolites. Zenodo. DOI

Alygizakis N, Slobodnik J. 2018. S32|REACH2017|>68,600 REACH Chemicals. Zenodo. DOI

Groh KJ, Geueke B, Martin O, et al. Overview of intentionally used food contact chemicals and their hazards. Environ Int. 2021;150:106225. doi: 10.1016/j.envint.2020.106225. PubMed DOI

Groh K, Geueke B, Muncke J (2020) FCCdb: food contact chemicals database. Version 5.0. Zenodo. 10.5281/zenodo.4296944

Groh K, Geueke B, Chirsir P et al (2021) S77|FCCDB|Food Contact Chemicals Database v5.0. Zenodo. 10.5281/zenodo.4625495

Letzel T, Grosse S, Sengel M (2017) S2|STOFFIDENT|HSWT/LfU STOFF-IDENT Database of Water-Relevant Substances. Zenodo. 10.5281/zenodo.2621452

Mistrik R (2017) S19|MZCLOUD|mzCloud compounds. Zenodo. 10.5281/zenodo.2628861

Aalizadeh R. 2019. S55|ZINC15PHARMA|>8600 Pharmaceuticals from ZINC15. Zenodo. DOI

Irwin J (2022) ZINC15. https://zinc15.docking.org/substances/subsets/world-not-fda/. Accessed 29 Apr 2022

Sterling T, Irwin JJ. ZINC 15—ligand discovery for everyone. J Chem Inf Model. 2015;55:2324–2337. doi: 10.1021/acs.jcim.5b00559. PubMed DOI PMC

Slobodnik J (2018) S33|SOLUTIONSMLOS|Chemicals used for Modelling in SOLUTIONS. Zenodo. 10.5281/zenodo.2653023

SOLUTIONS Consortium (2018) Solutions Project Website. https://www.solutions-project.eu/. Accessed 29 Apr 2022

Brack W, Altenburger R, Schüürmann G, et al. The SOLUTIONS project: challenges and responses for present and future emerging pollutants in land and water resources management. Sci Total Environ. 2015;503–504:22–31. doi: 10.1016/j.scitotenv.2014.05.143. PubMed DOI

Sjerps R (2018) S27|KWRSJERPS2|Extended Suspect List from Sjerps et al (KWRSJERPS). Zenodo. 10.5281/zenodo.2648818

Sjerps RMA, Vughs D, van Leerdam JA, et al. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res. 2016;93:254–264. doi: 10.1016/j.watres.2016.02.034. PubMed DOI

Ng K, Alygizakis N, Androulakakis A, et al. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin. J Hazard Mater. 2022;436:129276. doi: 10.1016/j.jhazmat.2022.129276. PubMed DOI

Ng K, Alygizakis N, Slobodnik J (2021) S89|PRORISKPFAS|List of PFAS Compiled from NORMAN SusDat. Zenodo. 10.5281/zenodo.5769582

LMC (Several Project Partners) 2019. S38|SOLNSLMCTPS|SOLUTIONS Predicted Transformation Products by LMC. Zenodo. DOI

Groh KJ, Backhaus T, Carney-Almroth B, 2018. Database of chemicals associated with plastic packaging (Cppdb), Updated Oct 9, 2018. Zenodo. DOI

Groh K, Schymanski E. 2019. S49|CPPDBLISTB|Database of Chemicals possibly (List B) associated with Plastic Packaging (CPPdb) Zenodo. DOI

Groh KJ, Backhaus T, Carney-Almroth B, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651:3253–3268. doi: 10.1016/j.scitotenv.2018.10.015. PubMed DOI

The Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers (SCCNFP) (2000) The 1st Update of the Inventory of Ingredients Employed in Cosmetic Products. SECTION II: Perfume and Aromatic Raw Materials. In: Report SCCNFP/0389/00 Final. https://www.norman-network.com/sites/default/files/files/suspectListExchange/SCCNFP038900_INCI-2000.pdf. Accessed 29 Apr 2022

European Commission (2006) COMMISSION DECISION of 9 February 2006 amending Decision 96/335/EC establishing an inventory and a common nomenclature of ingredients employed in cosmetic products (2006/257/EC). Official Journal of the European Union 2006/257/EC:528

von der Ohe P, Aalizadeh R. 2017. S13|EUCOSMETICS|Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and Revised Inventory (2006) Zenodo. DOI

Oswald P, Alygizakis N, Oswaldova M, Slobodnik J. 2020. S70|EISUSGCEIMS|Environmental Institute GC-EI-MS suspect list. Zenodo. DOI

Djoumbou-Feunang Y, Schymanski E, Zhang J, Wishart DS. 2020. S73|METXBIODB|Metabolite Reaction Database from BioTransformer. Zenodo. DOI

Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, et al. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform. 2019;11:2. doi: 10.1186/s13321-018-0324-5. PubMed DOI PMC

Swedish Chemicals Agency (KEMI) (2015) Occurrence and use of highly fluorinated substances and alternatives. Report from a Government Assignment, Kemikalieinspektionen, Stockholm, Sweden Report 7/15

Fischer S. 2017. S14|KEMIPFAS|PFAS highly fluorinated substances list: KEMI. Zenodo. DOI

Alygizakis N. 2018. S21|UATHTARGETS|University of Athens Target List. Zenodo. DOI

Alygizakis NA, Besselink H, Paulus GK, et al. Characterization of wastewater effluents in the Danube River Basin with chemical screening, in vitro bioassays and antibiotic resistant genes analysis. Environ Int. 2019;127:420–429. doi: 10.1016/j.envint.2019.03.060. PubMed DOI

Horai H, Arita M, Kanaya S, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–714. doi: 10.1002/jms.1777. PubMed DOI

Schymanski E, Schulze T, Alygizakis N. 2017. S1|MASSBANK|NORMAN Compounds in MassBank. Zenodo. DOI

Jones MR, Pinto E, Torres MA, et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 2021;196:117017. doi: 10.1016/j.watres.2021.117017. PubMed DOI

Jones MR, Pinto E, Torres MA, 2021. S75|CyanoMetDB|Comprehensive database of secondary metabolites from cyanobacteria. Zenodo. PubMed DOI

Haglund P, Rostkowski P (2019) S35|INDOORCT16|Indoor Environment Substances from 2016 Collaborative Trial. Zenodo. 10.5281/zenodo.2653206

Picache J, McLean J. 2019. S50|CCSCOMPEND|The Unified Collision Cross Section (CCS) Compendium. Zenodo. DOI

Picache JA, McLean JA (2018) Collision Cross Section Database. In: Vanderbilt University. https://lab.vanderbilt.edu/mclean-group/collision-cross-section-database/. Accessed 29 Apr 2022

Picache JA, Rose BS, Balinski A, et al. Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci. 2019;10:983–993. doi: 10.1039/C8SC04396E. PubMed DOI PMC

Glüge J, Scheringer M, Cousins IT, 2021. S80|PFASGLUEGE|Overview of PFAS Uses. Zenodo. DOI

Glüge J, Scheringer M, Cousins IT, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS) Environ Sci Processes Impacts. 2020;22:2345–2373. doi: 10.1039/D0EM00291G. PubMed DOI PMC

Phillips K. 2018. S22|EPACONS|US EPA Consumer Product Suspect List. Zenodo. DOI

Phillips KA, Yau A, Favela KA, et al. Suspect screening analysis of chemicals in consumer products. Environ Sci Technol. 2018;52:3125–3135. doi: 10.1021/acs.est.7b04781. PubMed DOI PMC

Kiefer K, Müller A, Singer H, Hollender J. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 2019;165:114972. doi: 10.1016/j.watres.2019.114972. PubMed DOI

Kiefer K, Müller A, Singer H, Hollender J (2020) S60|SWISSPEST19|Swiss Pesticides and Metabolites from Kiefer et al 2019. Zenodo. 10.5281/zenodo.3544759

Schymanski E. 2016. S3|NORMANCT15|NORMAN Collaborative Trial Targets and Suspects. Zenodo. DOI

Günthardt BF, Hollender J, Hungerbühler K, et al. Comprehensive toxic plants-phytotoxins database and its application in assessing aquatic micropollution potential. J Agric Food Chem. 2018;66:7577–7588. doi: 10.1021/acs.jafc.8b01639. PubMed DOI

Günthardt B. 2018. S29|PHYTOTOXINS|Toxic Plant Phytotoxin (TPPT) Database. Zenodo. PubMed DOI

Postigo C, Gil-Solsona R, Herrera-Batista MF, et al. A step forward in the detection of byproducts of anthropogenic organic micropollutants in chlorinated water. Trends Environ Anal Chem. 2021;32:e00148. doi: 10.1016/j.teac.2021.e00148. DOI

Postigo C, Gil-Solsona R, Herrera-Batista MF, 2021. S87|CHLORINETPS|List of chlorination byproducts of 137 CECs and small disinfection byproducts. Zenodo. DOI

Oberacher HM (2022) WRTMD or MSforID: Tandem mass spectral identification of small molecules. https://msforid.com/. Accessed 29 Apr 2022

Oberacher H (2019) S31|WRTMSD|Wiley Registry of Tandem Mass Spectral Data, MSforID. Zenodo. 10.5281/zenodo.2653017

Neuwald I, Muschket M, Zahn D, et al. Filling the knowledge gap: a suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems. Water Res. 2021;204:117645. doi: 10.1016/j.watres.2021.117645. PubMed DOI

Neuwald I, Muschket M, Zahn D, 2021. A suspect screening list of 1310 persistent and mobile (PM) candidates. Zenodo. PubMed DOI

Neuwald I, Muschket M, Zahn D, 2021. S84|UFZHSFPMT|PMT Suspect List from UFZ and HSF. Zenodo. DOI

Dulio V, Aalizadeh R. 2017. S16|FRENCHLIST|French Monitoring List. Zenodo. DOI

Krauss M, Schulze T. 2019. S53|UFZWANATARG|Target Compounds from UFZ WANA. Zenodo. DOI

Kiefer K, Du L, Singer H, Hollender J. Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Res. 2021;196:116994. doi: 10.1016/j.watres.2021.116994. PubMed DOI

Kiefer K, Du L, Singer H, Hollender J. 2021. S82|EAWAGPMT|PMT Suspect List from Eawag. Zenodo. DOI

Alygizakis N. 2018. S23|EIUBASURF|Surfactant Suspect List from EI and UBA. Zenodo. DOI

Fischer S. 2019. S39|KEMIWWSUS|Wastewater Suspect List based on Swedish Product Data. Zenodo. DOI

Chen W-L, Lin S-C, Huang C-H, et al. Wide-scope screening for pharmaceutically active substances in a leafy vegetable cultivated under biogas slurry irrigation. Sci Total Environ. 2021;750:141519. doi: 10.1016/j.scitotenv.2020.141519. PubMed DOI

Chen W-L. 2020. S72|NTUPHTW|Pharmaceutically Active Substances Suspect List from National Taiwan University. Zenodo. DOI

Wössner A, Singer H. 2017. S10|SWISSPHARMA|Pharmaceutical List with Consumption Data. Zenodo. DOI

Celma A, Sancho JV, Schymanski EL, et al. Improving target and suspect screening high-resolution mass spectrometry workflows in environmental analysis by ion mobility separation. Environ Sci Technol. 2020;54:15120–15131. doi: 10.1021/acs.est.0c05713. PubMed DOI

Celma A, Fabregat-Safont D, Ibàñez M, 2019. S61|UJICCSLIB|Collision Cross Section (CCS) Library from UJI. Zenodo. DOI

Dulio V. 2017. S15|NORMANPRI|NORMAN Priority List. Zenodo. DOI

Groh K, Schymanski E. 2019. S48|CPPDBLISTA|Database of Chemicals likely (List A) associated with Plastic Packaging (CPPdb) Zenodo. DOI

Kirchner M, Alygizakis N. 2019. S51|WRIGCHRMS|GC-HRMS target list of WRI. Zenodo. DOI

Singh RR, Lai A, Krier J, et al. Occurrence and distribution of pharmaceuticals and their transformation products in Luxembourgish surface waters. ACS Environ Au. 2021;1:58–70. doi: 10.1021/acsenvironau.1c00008. PubMed DOI PMC

Singh RR. 2021. S76|LUXPHARMA|Pharmaceuticals Marketed in Luxembourg. Zenodo. DOI

Ruttkies C, Schymanski EL, Strehmel N, et al. Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Anal Bioanal Chem. 2019;411:4683–4700. doi: 10.1007/s00216-019-01885-0. PubMed DOI PMC

Schymanski E, Krauss M. 2019. S42|HDXNOEX|Hydrogen Deuterium Exchange (HDX) Standard Set. Zenodo. DOI

Paulus GK, Hornstra LM, Alygizakis N, et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int J Hyg Environ Health. 2019;222:635–644. doi: 10.1016/j.ijheh.2019.01.004. PubMed DOI

Alygizakis N. 2016. S6|ITNANTIBIOTIC|Antibiotic List: ITN MSCA ANSWER. Zenodo. DOI

Bade R, Bijlsma L, Miller TH, et al. Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis. Sci Total Environ. 2015;538:934–941. doi: 10.1016/j.scitotenv.2015.08.078. PubMed DOI

Bade R, Schymanski E. 2015. S4|UJIBADE|University of Jaume I Bade et al List. Zenodo. DOI

Schollée JE, Schymanski EL, Stravs MA, et al. Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products. J Am Soc Mass Spectrom. 2017;28:2692–2704. doi: 10.1007/s13361-017-1797-6. PubMed DOI

Schollee J, Schymanski E. 2020. S66|EAWAGTPS|Parent-Transformation Product Pairs from Eawag. Zenodo. DOI

International Agency for Research on Cancer (IARC) (2022) Exposome-Explorer: database on biomarkers of environmental exposures. http://exposome-explorer.iarc.fr/. Accessed 29 Apr 2022

Neveu V, Salek R, Williams AJ, Schymanski EL. 2019. S34|EXPOSOMEXPL|Biomarkers from Exposome-Explorer. Zenodo. DOI

Neveu V, Moussy A, Rouaix H, et al. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017;45:D979–D984. doi: 10.1093/nar/gkw980. PubMed DOI PMC

Ogawa Y, Tokunaga E, Kobayashi O, et al. Current contributions of organofluorine compounds to the agrochemical industry. iScience. 2020;23:101467. doi: 10.1016/j.isci.2020.101467. PubMed DOI PMC

Ogawa Y, Tokunaga E, Kobayashi O, 2022. S94|FLUOROPEST|List of 423 FRAC/HRAC/IRAC classified fluoro-agrochemicals. Zenodo. DOI

European Chemicals Agency (ECHA) (2022) Mapping exercise—Plastic additives initiative—ECHA. https://echa.europa.eu/mapping-exercise-plastic-additives-initiative. Accessed 29 Apr 2022

ECHA. 2019. S47|ECHAPLASTICS|A list from the plastic additives initiative mapping exercise by ECHA. Zenodo. DOI

Schymanski E. 2014. S7|EAWAGSURF|Eawag Surfactants Suspect List. Zenodo. DOI

Menger F, Boström G, Jonsson O, et al. Identification of pesticide transformation products in surface water using suspect screening combined with national monitoring data. Environ Sci Technol. 2021;55:10343–10353. doi: 10.1021/acs.est.1c00466. PubMed DOI PMC

Menger F, Boström G (2021) S78|SLUPESTTPS|Pesticides and TPs from SLU, Sweden. Zenodo. 10.5281/zenodo.4687924

Krier J, Singh RR, Kondić T, et al. Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. Environ Int. 2022;158:106885. doi: 10.1016/j.envint.2021.106885. PubMed DOI PMC

Krier J. 2020. S69|LUXPEST|Pesticide Screening List for Luxembourg. Zenodo. DOI

Arp HPH, Hale SE (2019) REACH: Improvement of guidance and methods for the identification and assessment of PMT/vPvM substances. German Environment Agency (UBA) Texte 126/2019:131. ISBN: 1862-4804, Dessau-Roßlau, Germany.

Arp HPH, Hale SE, Schliebner I, Neumann M (2022) Prioritised PMT/vPvM substances in the REACH registration database. German Environment Agency (UBA) Texte XXX/2022:(accepted). ISBN: 1862-4804, Dessau-Roßlau, Germany

Gago Ferrero P. 2016. S8|ATHENSSUS|University of Athens Surfactants and Suspects List. Zenodo. DOI

Inoue M, Sumii Y, Shibata N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega. 2020;5:10633–10640. doi: 10.1021/acsomega.0c00830. PubMed DOI PMC

Inoue M, Sumii Y, Shibata N. 2022. S92|FLUOROPHARMA|List of 340 ATC classified fluoro-pharmaceuticals. Zenodo. DOI

Trace Analysis and Mass Spectrometry Group (2022) TrAMS: trace analysis and mass spectrometry group. http://trams.chem.uoa.gr/. Accessed 29 Apr 2022

Damalas DE, Kokolakis S, Karagiannidis A, 2020. S65|UATHTARGETSGC|University of Athens GC-APCI-HRMS Target List. Zenodo. DOI

Alygizakis N, Choi P, Gomez Ramos MJ, 2020. S62|NORMANEWS2|NormaNEWS2: retrospective screening of new emerging contaminants. Zenodo. DOI

NORMAN Association (2022) NormaNEWS2 Website. https://www.norman-network.net/?q=node/327. Accessed 29 Apr 2022

Mohammed Taha H, Janssen EM-L. 2021. S85|MICROCYSTINS|Microcystins from CyanoMetDB. Zenodo. DOI

Belova L, Caballero-Casero N, van Nuijs ALN, Covaci A. Ion mobility-high-resolution mass spectrometry (IM-HRMS) for the analysis of contaminants of emerging concern (CECs): database compilation and application to urine samples. Anal Chem. 2021;93:6428–6436. doi: 10.1021/acs.analchem.1c00142. PubMed DOI

Belova L, Caballero-Casero N, van Nuijs ALN, Covaci A. 2021. S79|UACCSCEC|Collision Cross Section (CCS) Library from UAntwerp. Zenodo. DOI

Galani K, Aligizakis N, Thomaidis N (2019) S57|GREEKPHARMA|Suspect Pharmaceuticals from the National Organization of Medicine, Greece. Zenodo. 10.5281/zenodo.3248883

Moschet C (2017) S11|SWISSPEST|Swiss Insecticides, Fungicides and TPs. Zenodo. 10.5281/zenodo.2623741

Oltmanns J, Bohlen M, Escher S, et al. Final Report: Applying a tested procedure for the identification of potential emerging chemical risks in the food chain to the substances registered under REACH–REACH 2. EFSA Support Publ. 2019;16:263. doi: 10.2903/sp.efsa.2019.EN-1597. DOI

Oltmanns J, Aligizakis N, EFSA, Koschorreck J (2019) S54|EFSAPRI|European Food Safety Authority Priority Substances. Zenodo. 10.5281/zenodo.3248993

Fischer S, Rostkowski P. 2019. S30|PHENANTIOX|A list of Phenolic Antioxidants from KEMI and NILU. Zenodo. DOI

Thomaidis NS, Gago-Ferrero P, Ort C, et al. Reflection of socioeconomic changes in wastewater: licit and illicit drug use patterns. Environ Sci Technol. 2016;50:10065–10072. doi: 10.1021/acs.est.6b02417. PubMed DOI

Alygizakis NA, Gago-Ferrero P, Borova VL, et al. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci Total Environ. 2016;541:1097–1105. doi: 10.1016/j.scitotenv.2015.09.145. PubMed DOI

Alygizakis N, Thomaidis N. 2019. S56|UOATARGPHARMA|Target Pharmaceutical/Drug List from University of Athens. Zenodo. DOI

Rüdel H. 2018. S28|EUBIOCIDES|Biocides from the NORMAN Priority List. Zenodo. DOI

Sjerps R. 2016. S5|KWRSJERPS|KWR drinking water suspect list. Zenodo. DOI

Alygizakis N, Samanipour S, Thomas K. 2017. S12|NORMANEWS|NormaNEWS for retrospective screening of new emerging contaminants. Zenodo. DOI

Alygizakis NA, Samanipour S, Hollender J, et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ Sci Technol. 2018;52:5135–5144. doi: 10.1021/acs.est.8b00365. PubMed DOI

Renaud J, Sumarah M. 2018. S26|MYCOTOXINS|List of Mycotoxins from AAFC. Zenodo. DOI

Rasmussen A (2016) NaToxAq Project Website. https://natoxaq.ku.dk/. Accessed 29 Apr 2022

Schulze T. 2020. S64|NATOXAQ|NaToxAq: natural toxins and drinking water quality—from source to tap. Zenodo. DOI

Aurisano N, Huang L, Milài Canals L, et al. Chemicals of concern in plastic toys. Environ Int. 2021;146:106194. doi: 10.1016/j.envint.2020.106194. PubMed DOI

Aurisano N, Huang L, Canals LMI, 2022. S91| CECTOYS|Chemicals of Emerging Concern (CECs) in plastic toys. Zenodo. DOI

LCSB-ECI, Krier J, Schymanski E et al (2020) S68|HSDBTPS|Transformation Products Extracted from HSDB Content in PubChem. Zenodo. 10.5281/zenodo.3827487

European Commission (2020) COMMISSION REGULATION (EU) 2020/2081 of 14 December 2020 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards substances in tattoo inks or permanent make-up. European Commission Regulation C/2020/8758:12

European Commission (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. European Commission Regulation 1272/2008:1355

Commission E, Mohammed Taha H, Schymanski E. 2021. S86|TATTOOINK|TATTOOINK as per EU regulation 2020/2081. Zenodo. DOI

US EPA (2022) Chemical Contaminants—CCL 4. https://www.epa.gov/ccl/chemical-contaminants-ccl-4. Accessed 29 Apr 2022

Epa US, Schymanski EL, Williams AJ. 2019. S41|CCL4|CCL 4 Chemical Candidate List. Zenodo. DOI

US EPA (2022) Contaminant Candidate List 5 (CCL 5). https://www.epa.gov/ccl/contaminant-candidate-list-5-ccl-5. Accessed 29 Apr 2022

Epa US, Schymanski E. 2021. S83|CCL5|Contaminant Candidate List CCL 5 (Draft) Zenodo. DOI

Torres S, Schymanski E, Ramirez N. 2019. S52|THSMOKE|Thirdhand Smoke (THS) Compounds. Zenodo. DOI

Sims K, James A, Kärrman A, 2022. S95|PFASANEXCH|PFAS List from the NORMAN PFAS Analytical Exchange Activity. Zenodo. DOI

NORMAN Association, UK Environment Agency, Sims K, PFAS Analytical Exchange Steering Committee (2022) 2021 NORMAN network PFAS Analytical Exchange Final Report. https://www.norman-network.net/sites/default/files/files/QA-QC%20Issues/2021%20NORMAN%20network%20PFAS%20Analytical%20Exchange%20Final%20Report%2014022022.pdf. Accessed 4 Jul 2022

Arp HPH, Hale SE. 2020. S63|UBADWGW|REACH Registered Substances Detected in Drinking (DW) or Groundwater (GW) Zenodo. DOI

Aalizadeh R. 2019. S59|NPINESCT|Natural Product Insecticides. Zenodo. DOI

Fischer S. 2020. S67|TBUTYLPHENOLS|List of tert-butyl phenols from KEMI. Zenodo. DOI

German Environment Agency (UBA) 2022. S97|UBABPAALT|List of Bisphenol A Alternatives from UBA. Zenodo. DOI

Eilebrecht E, Wenzel A, Teigeler M, et al (2020) Bewertung des endokrinen Potenzials von Bisphenol Alternativstoffen in umweltrelevanten Verwendungen (in German): Evaluation of the Endocrine Potential of Bisphenol Alternatives in Environmentally-relevant Uses. German Environment Agency (UBA) Texte 123/2019, Dessau-Roßlau, Germany:88

German Environment Agency (UBA) Division IV 1.2 (Biocides) (2021) Empfehlungslisten für die Untersuchung der Umweltbelastung durch Biozide: Aktualisierung der Stofflisten des Berichts UBA-TEXTE 15/2017 (in German): Recommendations to investigate environmental contamination with biocides: updating the chemical lists from UBA-TEXTE 15/2017. German Environment Agency (UBA) Addendum to Texte 114/2017, Dessau-Roßlau, Germany:27

German Environment Agency (UBA) Division IV 1.2 (Biocides) (2017) Are biocide emissions into the environment already at alarming levels? Recommendations of the German Environment Agency (UBA) for an approach to study the impact of biocides on the environment. German Environment Agency (UBA) Texte 114/2017, Dessau-Roßlau, Germany:67

German Environment Agency (UBA), Mohammed Taha H (2021) S88|UBABIOCIDES|List of Prioritized Biocides from UBA. Zenodo. 10.5281/zenodo.5767494

Epa US. 2019. S40|ALGALTOX|Algal toxins list from CompTox. Zenodo. DOI

Swedish Chemicals Agency (KEMI) (2017) Bisfenoler—en kartläggning och analys (in Swedish). EN: Bisphenols—a mapping and analysis. Kemikalieinspektionen, Stockholm, Sweden Rapport 5/17:177

Rostkowski P, Fischer S. 2017. S20|BISPHENOLS|Bisphenols. Zenodo. DOI

Merino C, Vinaixa M, Ramirez N. 2021. S81|THSTPS|Thirdhand Smoke Specific Metabolites. Zenodo. DOI

Schymanski E, Wang Z, Wolf R, Arp HPH. 2022. S90|ZEROPMBOX1|ZeroPM Box 1 Substances. Zenodo. DOI

Norwegian Geotechnical Institute (NGI) Welcome to ZeroPM: Zero Pollution of Persistent, Mobile Substances. https://zeropm.eu/. Accessed 29 Apr 2022

Schymanski EL, Williams AJ. 2019. S44|STATINS|Statins Collection from Public Resources. Zenodo. DOI

Schymanski E, Hakkinen P. 2022. S98|TIRECHEM|Tire-related chemicals in environment from literature. Zenodo. DOI

US Environmental Protection Agency (2022) CompTox Chemicals Dashboard: Chemical Lists Page. https://comptox.epa.gov/dashboard/chemical-lists. Accessed 30 May 2022

US EPA, NCBI/NLM/NIH (2022) PubChem Classification Browser: EPA DSSTox Tree (PubChem CompTox Chemicals Dashboard Chemical Lists Tree). https://pubchem.ncbi.nlm.nih.gov/classification/#hid=105. Accessed 30 May 2022

Schymanski EL, Mohammed Taha H (2022) NORMAN-SLE Repository. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE. Accessed 30 May 2022

Schymanski EL (2022) NORMAN-SLE Zenodo Statistics 2022-04-28. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/NORMAN-SLE_Zenodo_stats_20220428.csv. Accessed 30 May 2022

Schymanski EL (2022) NORMAN-SLE Zenodo Citations 2022-05-01. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/NORMAN-SLE_Zenodo_Citations_20220501.csv. Accessed 30 May 2022

Nikolopoulou V, Aalizadeh R, Nika M-C, Thomaidis NS. TrendProbe: time profile analysis of emerging contaminants by LC-HRMS non-target screening and deep learning convolutional neural network. J Hazard Mater. 2022;428:128194. doi: 10.1016/j.jhazmat.2021.128194. PubMed DOI

Aalizadeh R, Alygizakis NA, Schymanski EL, et al. Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening. Anal Chem. 2021;93:11601–11611. doi: 10.1021/acs.analchem.1c02348. PubMed DOI

McEachran AD, Balabin I, Cathey T, et al. Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns. Sci Data. 2019;6:141. doi: 10.1038/s41597-019-0145-z. PubMed DOI PMC

Alygizakis N, Konstantakos V, Bouziotopoulos G, et al. A multi-label classifier for predicting the most appropriate instrumental method for the analysis of contaminants of emerging concern. Metabolites. 2022;12:199. doi: 10.3390/metabo12030199. PubMed DOI PMC

Schymanski EL, Kondić T, Neumann S, et al. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminform. 2021;13:19. doi: 10.1186/s13321-021-00489-0. PubMed DOI PMC

Giné R, Capellades J, Badia JM, et al. HERMES: a molecular-formula-oriented method to target the metabolome. Nat Methods. 2021;18:1370–1376. doi: 10.1038/s41592-021-01307-z. PubMed DOI PMC

Nandika D, Karlinasari L, Arinana A, et al. Chemical components of fungus comb from Indo-Malayan termite Macrotermes gilvus hagen mound and its bioactivity against wood-staining fungi. Forests. 2021;12:1591. doi: 10.3390/f12111591. DOI

Dekić MS, Radulović NS, Selimović ES, Boylan F. A series of esters of diastereomeric menthols: comprehensive mass spectral libraries and gas chromatographic data. Food Chem. 2021;361:130130. doi: 10.1016/j.foodchem.2021.130130. PubMed DOI

Wang Q, Ruan Y, Jin L, et al. Target, nontarget, and suspect screening and temporal trends of per- and polyfluoroalkyl substances in marine mammals from the South China Sea. Environ Sci Technol. 2021;55:1045–1056. doi: 10.1021/acs.est.0c06685. PubMed DOI

Brase RA, Schwab HE, Li L, Spink DC. Elevated levels of per- and polyfluoroalkyl substances (PFAS) in freshwater benthic macroinvertebrates from the Hudson River Watershed. Chemosphere. 2022;291:132830. doi: 10.1016/j.chemosphere.2021.132830. PubMed DOI

Yukioka S, Tanaka S, Suzuki Y, et al. Data-independent acquisition with ion mobility mass spectrometry for suspect screening of per- and polyfluoroalkyl substances in environmental water samples. J Chromatogr A. 2021;1638:461899. doi: 10.1016/j.chroma.2021.461899. PubMed DOI

Le Moigne D, Demay J, Reinhardt A, et al. Dynamics of the metabolome of Aliinostoc sp. PMC 882.14 in response to light and temperature variations. Metabolites. 2021;11:745. doi: 10.3390/metabo11110745. PubMed DOI PMC

Libin Xu Lab (2022) CCSbase: An integrated interface for CCS database and prediction. https://ccsbase.net/. Accessed 23 Jul 2022

Ross DH, Cho JH, Xu L. Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections. Anal Chem. 2020;92:4548–4557. doi: 10.1021/acs.analchem.9b05772. PubMed DOI

Zhang J, Thiessen PA, Schymanski EL et al (2022) PubChem: Aggregated CCS Classification Tree. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=106. Accessed 1 May 2022

Schymanski EL (2022) Finding MS(/MS) Information for NORMAN-SLE lists via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/docs/SLEwithMS.md. Accessed 4 Jul 2022

Schymanski EL (2022) Finding CCS Values for NORMAN-SLE lists via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/docs/SLEwithCCS.md. Accessed 4 Jul 2022

Schymanski EL (2022) Retrieving CCS. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/blob/master/annotations/CCS/CCS_retrieval/RetrievingCCS.pdf. Accessed 4 Jul 2022

Schymanski E, Zhang J, Thiessen P, Bolton E. 2022. Experimental CCS values in PubChem. Zenodo. DOI

Schymanski E, Bolton E, Cheng T, 2021. Transformations in PubChem—full dataset. Zenodo. DOI

Helmus R, van de Velde B, Brunner AM, et al. PatRoon 2.0: improved non-target analysis workflowsincluding automated transformation product screening. JOSS. 2022;7:4029. doi: 10.21105/joss.04029. DOI

Bugsel B, Bauer R, Herrmann F, et al. LC-HRMS screening of per- and polyfluorinated alkyl substances (PFAS) in impregnated paper samples and contaminated soils. Anal Bioanal Chem. 2022;414:1217–1225. doi: 10.1007/s00216-021-03463-9. PubMed DOI PMC

Martin JW, Mabury SA, O’Brien PJ. Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes. Chem Biol Interact. 2005;155:165–180. doi: 10.1016/j.cbi.2005.06.007. PubMed DOI

Alhelou R, Seiwert B, Reemtsma T. Hexamethoxymethylmelamine—a precursor of persistent and mobile contaminants in municipal wastewater and the water cycle. Water Res. 2019;165:114973. doi: 10.1016/j.watres.2019.114973. PubMed DOI

Baesu A, Audet C, Bayen S. Application of non-target analysis to study the thermal transformation of malachite and leucomalachite green in brook trout and shrimp. Curr Res Food Sci. 2021;4:707–715. doi: 10.1016/j.crfs.2021.09.010. PubMed DOI PMC

Baesu A, Audet C, Bayen S. Evaluation of different extractions for the metabolite identification of malachite green in brook trout and shrimp. Food Chem. 2022;369:130567. doi: 10.1016/j.foodchem.2021.130567. PubMed DOI

McEachran AD, Mansouri K, Grulke C, et al. “MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminform. 2018;10:45. doi: 10.1186/s13321-018-0299-2. PubMed DOI PMC

Aalizadeh R, von der Ohe PC, Thomaidis NS. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by Ant Colony Optimization-Support Vector Machine QSTR models. Environ Sci Processes Impacts. 2017;19:438–448. doi: 10.1039/C6EM00679E. PubMed DOI

Schymanski EL (2022) Overlap of NORMAN-SLE and CompTox via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/misc/PubChem_CompTox_SLE.md. Accessed 11 Jul 2022

Alygizakis NA, Oswald P, Thomaidis NS, et al. NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. TrAC Trends Anal Chem. 2019;115:129–137. doi: 10.1016/j.trac.2019.04.008. DOI

Federal Office for the Environment (FOEN) (2022) Chlorothalonil metabolites in groundwater. https://www.bafu.admin.ch/bafu/en/home/themen/thema-wasser/wasser--fachinformationen/zustand-der-gewaesser/zustand-des-grundwassers/grundwasser-qualitaet/pflanzenschutzmittel-im-grundwasser/chlorothalonil-metaboliten-im-grundwasser.html. Accessed 20 Jul 2022

Kiefer K, Müller A, Singer H, et al. Pflanzenschutzmittel-metaboliten im Grundwasser (EN: Pesticide Metabolites in Groundwater) Aqua Gas. 2019;99:14–23.

The FAIRsharing Community, Sansone S-A, McQuilton P et al (2019) FAIRsharing as a community approach to standards, repositories and policies. Nat Biotechnol 37:358–367. 10.1038/s41587-019-0080-8 PubMed PMC

NCBI/NLM/NIH (2021) PubChem Submissions Template Folder. https://ftp.ncbi.nlm.nih.gov/pubchem/Other/Submissions/. Accessed 25 May 2021

ELIXIR Europe (2022) Project 26: Shedding the light on unknown chemical substances (BioHackathon Europe 2022). In: GitHub. https://github.com/elixir-europe/biohackathon-projects-2022/tree/main/26. Accessed 11 Jul 2022

InChI Trust (2022) Organometallics—InChI Trust. https://www.inchi-trust.org/organometallics/. Accessed 11 Jul 2022

European Chemicals Agency (ECHA) (2022) Information on biocides—ECHA. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances. Accessed 6 Jul 2022

Neveu V, Nicolas G, Salek RM, et al. Exposome-Explorer 2.0: an update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Res. 2019;48:D908–D912. doi: 10.1093/nar/gkz1009. PubMed DOI PMC

International Agency for Research on Cancer (IARC) (2022) Exposome-Explorer: Microbial metabolites. http://exposome-explorer.iarc.fr/microbial_metabolites. Accessed 10 Jul 2022

Neveu V, Nicolas G, Amara A, et al. The human microbial exposome: expanding the Exposome-Explorer database with gut microbial metabolites. In Review. 2022 doi: 10.21203/rs.3.rs-1754003/v2. PubMed DOI PMC

California Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency (2022) Proposition 65 Warnings Website - Your right to know. https://www.p65warnings.ca.gov/node. Accessed 6 Jul 2022

Neveu V, Perez-Jimenez J, Vos F et al (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010:bap024–bap024. 10.1093/database/bap024 PubMed PMC

Rothwell JA, Urpi-Sarda M, Boto-Ordonez M et al (2012) Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012:bas031–bas031. 10.1093/database/bas031 PubMed PMC

Rothwell JA, Perez-Jimenez J, Neveu V et al (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013:bat070–bat070. 10.1093/database/bat070 PubMed PMC

Geueke B, Groh KJ, Maffini MV et al (2022) Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutri 1–11. 10.1080/10408398.2022.2067828 PubMed

Faber A-H, Annevelink M, Gilissen HK, et al. How to adapt chemical risk assessment for unconventional hydrocarbon extraction related to the water system. In: de Voogt P, et al., editors. Reviews of environmental contamination and toxicology. Cham: Springer International Publishing; 2017. pp. 1–32. PubMed

Faber A-H, Brunner AM, Dingemans MML, et al. Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening. Sci Total Environ. 2021;794:148727. doi: 10.1016/j.scitotenv.2021.148727. PubMed DOI

Faber A-H, Annevelink MPJA, Schot PP, et al. Chemical and bioassay assessment of waters related to hydraulic fracturing at a tight gas production site. Sci Total Environ. 2019;690:636–646. doi: 10.1016/j.scitotenv.2019.06.354. PubMed DOI

NORMAN Association (2022) NORMAN Working Group 1: Prioritisation Website. https://www.norman-network.com/?q=node/50. Accessed 12 Jul 2022

van Dijk J, Gustavsson M, Dekker SC, van Wezel AP. Towards ‘one substance—one assessment’: an analysis of EU chemical registration and aquatic risk assessment frameworks. J Environ Manage. 2021;280:111692. doi: 10.1016/j.jenvman.2020.111692. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...