Multiparametric Quantitative MRI in Neurological Diseases

. 2021 ; 12 () : 640239. [epub] 20210308

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33763021

Magnetic resonance imaging (MRI) is the gold standard imaging technique for diagnosis and monitoring of many neurological diseases. However, the application of conventional MRI in clinical routine is mainly limited to the visual detection of macroscopic tissue pathology since mixed tissue contrasts depending on hardware and protocol parameters hamper its application for the assessment of subtle or diffuse impairment of the structural tissue integrity. Multiparametric quantitative (q)MRI determines tissue parameters quantitatively, enabling the detection of microstructural processes related to tissue remodeling in aging and neurological diseases. In contrast to measuring tissue atrophy via structural imaging, multiparametric qMRI allows for investigating biologically distinct microstructural processes, which precede changes of the tissue volume. This facilitates a more comprehensive characterization of tissue alterations by revealing early impairment of the microstructural integrity and specific disease-related patterns. So far, qMRI techniques have been employed in a wide range of neurological diseases, including in particular conditions with inflammatory, cerebrovascular and neurodegenerative pathology. Numerous studies suggest that qMRI might add valuable information, including the detection of microstructural tissue damage in areas appearing normal on conventional MRI and unveiling the microstructural correlates of clinical manifestations. This review will give an overview of current qMRI techniques, the most relevant tissue parameters and potential applications in neurological diseases, such as early (differential) diagnosis, monitoring of disease progression, and evaluating effects of therapeutic interventions.

Zobrazit více v PubMed

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. (2018) 17:162–73. 10.1016/S1474-4422(17)30470-2 PubMed DOI

Cercignani M, Dowell NG, Tofts P. editors. Quantitative MRI of the Brain: Principles of Physical Measurement. Boca Raton FL: CRC Press Taylor & Francis Group; (2018).

Gracien R-M, Maiworm M, Brüche N, Shrestha M, Nöth U, Hattingen E, et al. . How stable is quantitative MRI? – Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs. Neuroimage. (2020) 207:116364. 10.1016/j.neuroimage.2019.116364 PubMed DOI

Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, et al. . Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci. (2013) 7:95. 10.3389/fnins.2013.00095 PubMed DOI PMC

Weiskopf N, Mohammadi S, Lutti A, Callaghan MF. Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr Opin Neurol. (2015) 28:313–22. 10.1097/WCO.0000000000000222 PubMed DOI

Pollock JM, Tan H, Kraft RA, Whitlow CT, Burdette JH, Maldjian JA. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am. (2009) 17:315–38. 10.1016/j.mric.2009.01.008 PubMed DOI PMC

Soldozy S, Galindo J, Snyder H, Ali Y, Norat P, Yagmurlu K, et al. . Clinical utility of arterial spin labeling imaging in disorders of the nervous system. Neurosurg Focus. (2019) 47:E5. 10.3171/2019.9.FOCUS19567 PubMed DOI

Haller S, Zaharchuk G, Thomas DL, Lovblad K-O, Barkhof F, Golay X. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology. (2016) 281:337–56. 10.1148/radiol.2016150789 PubMed DOI

Neeb H, Zilles K, Shah NJ. Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage. (2006) 29:910–22. 10.1016/j.neuroimage.2005.08.062 PubMed DOI

Carey D, Caprini F, Allen M, Lutti A, Weiskopf N, Rees G, et al. . Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure. Neuroimage. (2018) 182:429–40. 10.1016/j.neuroimage.2017.11.066 PubMed DOI PMC

Deichmann R, Gracien R-M. T1: Longitudinal relaxation time. In: Cercignani M, Dowell NG, Tofts P, editors. Quantitative MRI of the Brain: Principles of Physical Measurement. Boca Raton FL: CRC Press Taylor & Francis Group; (2018). p. 73–82.

Laule C, Leung E, Lis D K B, Traboulsee AL, Paty DW, MacKay AL, et al. . Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler. (2006) 12:747–53. 10.1177/1352458506070928 PubMed DOI

Burgetova A, Seidl Z, Krasensky J, Horakova D, Vaneckova M. Multiple sclerosis and the accumulation of iron in the Basal Ganglia: quantitative assessment of brain iron using MRI t(2) relaxometry. Eur. Neurol. (2010) 63:136–43. 10.1159/000279305 PubMed DOI

Ghassaban K, Liu S, Jiang C, Haacke EM. Quantifying iron content in magnetic resonance imaging. Neuroimage. (2019) 187:77–92. 10.1016/j.neuroimage.2018.04.047 PubMed DOI

Yao B, Hametner S, van Gelderen P, Merkle H, Chen C, Lassmann H, et al. . 7 Tesla magnetic resonance imaging to detect cortical pathology in multiple sclerosis. PLoS ONE. (2014) 9:e108863. 10.1371/journal.pone.0108863 PubMed DOI PMC

Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J. Neurol. (2005) 252 Suppl 5:v16–24. 10.1007/s00415-005-5004-5 PubMed DOI

Filippi M, Rocca MA, Barkhof F, Brück W, Chen JT, Comi G, et al. . Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. (2012) 11:349–60. 10.1016/S1474-4422(12)70003-0 PubMed DOI

Krämer J, Brück W, Zipp F, Cerina M, Groppa S, Meuth SG. Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol. (2019) 182. 10.1016/j.pneurobio.2019.101663 PubMed DOI

Vrenken H, Geurts, Jeroen J G, Knol DL, van Dijk, L Noor, et al. . Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology. (2006) 240:811–20. 10.1148/radiol.2403050569 PubMed DOI

Gracien RM, Jurcoane A, Wagner M, Reitz SC, Mayer C, Volz S, et al. . Multimodal quantitative MRI assessment of cortical damage in relapsing-remitting multiple sclerosis. J Magn Reson Imag. (2016) 44:1600–7. 10.1002/jmri.25297 PubMed DOI

Lommers E, Simon J, Reuter G, Delrue G, Dive D, Degueldre C, et al. . Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. Neuroimage Clin. (2019) 23. 10.1016/j.nicl.2019.101879 PubMed DOI PMC

van Wijnen A, Petrov F, Maiworm M, Frisch S, Foerch C, Hattingen E, et al. . Cortical quantitative MRI parameters are related to the cognitive status in patients with relapsing-remitting multiple sclerosis. Eur Radiol. (2020) 30:1045–53. 10.1007/s00330-019-06437-9 PubMed DOI

Davies GR, Hadjiprocopis A, Altmann DR, Chard DT, Griffin CM, Rashid W, et al. . Normal-appearing grey and white matter T1 abnormality in early relapsing-remitting multiple sclerosis: a longitudinal study. Mult. Scler. (2007) 13:169–77. 10.1177/1352458506070726 PubMed DOI

Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji D, Rotzinger D, et al. . Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann Clin Transl Neurol. (2014) 1:423–32. 10.1002/acn3.68 PubMed DOI PMC

Gracien R-M, Reitz SC, Hof SM, Fleischer V, Zimmermann H, Droby A, et al. . Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur Radiol. (2016) 26:2578–86. 10.1007/s00330-015-4072-x PubMed DOI

Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM. White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J. Neurol. (2002) 249:1279–86. 10.1007/s00415-002-0837-7 PubMed DOI

Papadopoulos K, Tozer DJ, Fisniku L, Altmann DR, Davies G, Rashid W, et al. . TI-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult. Scler. (2010) 16:427–33. 10.1177/1352458509359924 PubMed DOI

Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM. MRI brain T1 relaxation time changes in MS patients increase over time in both the white matter and the cortex. J Neuroimaging. (2003) 13:234–9. 10.1111/j.1552-6569.2003.tb00184.x PubMed DOI

Gracien R-M, Reitz SC, Hof S-M, Fleischer V, Droby A, Wahl M, et al. . Longitudinal quantitative MRI assessment of cortical damage in multiple sclerosis: A pilot study. J Magn Reson Imaging. (2017) 46:1485–90. 10.1002/jmri.25685 PubMed DOI

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. . ILAE official report: a practical clinical definition of epilepsy. Epilepsia. (2014) 55:475–82. 10.1111/epi.12550 PubMed DOI

Bernasconi A, Bernasconi N, Caramanos Z, Reutens DC, Andermann F, Dubeau F, et al. . T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage. (2000) 12:739–46. 10.1006/nimg.2000.0724 PubMed DOI

Cantor-Rivera D, Khan AR, Goubran M, Mirsattari SM, Peters TM. Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging. Comput Med Imaging Graph. (2015) 41:14–28. 10.1016/j.compmedimag.2014.07.002 PubMed DOI

Schievelkamp AH, Jurcoane A, Rüber T, Ernst L, Müller A, Mädler B, et al. . Limbic encephalitis in patients with epilepsy-is quantitative MRI diagnostic? Clin Neuroradiol. (2019) 29:623–30. 10.1007/s00062-018-0705-1 PubMed DOI

Kassubek J, Huppertz H-J, Spreer J, Schulze-Bonhage A. Detection and localization of focal cortical dysplasia by voxel-based 3-D MRI analysis. Epilepsia. (2002) 43:596–602. 10.1046/j.1528-1157.2002.41401.x PubMed DOI

Huppertz H-J, Grimm C, Fauser S, Kassubek J, Mader I, Hochmuth A, et al. . Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res. (2005) 67:35–50. 10.1016/j.eplepsyres.2005.07.009 PubMed DOI

Nöth U, Gracien R-M, Maiworm M, Reif PS, Hattingen E, Knake S, et al. . Detection of cortical malformations using enhanced synthetic contrast images derived from quantitative T1 maps. NMR Biomed. (2020) 33:e4203. 10.1002/nbm.4203 PubMed DOI

Maiworm M, Nöth U, Hattingen E, Steinmetz H, Knake S, Rosenow F, et al. . Improved visualization of focal cortical dysplasia with surface-based multiparametric quantitative MRI. Front. Neurosci. (2020) 14:622. 10.3389/fnins.2020.00622 PubMed DOI PMC

Prager O, Kamintsky L, La Hasam-Henderson, Schoknecht K, Wuntke V, Papageorgiou I, et al. . Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction. Epilepsia. (2019) 60:14631. 10.1111/epi.14631 PubMed DOI

Löscher W, Friedman A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int J Mol Sci. (2020) 21:591. 10.3390/ijms21020591 PubMed DOI PMC

Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Nakamura K, Yamamoto Y, et al. . Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry. (1996) 61:18–25. 10.1136/jnnp.61.1.18 PubMed DOI PMC

Yamauchi Y. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med. (1999) 40:1992. PubMed

Bakker FC, Klijn CJ, Jennekens-Schinkel A, van der Tweel I, Tulleken CA, Kappelle LJ. Cognitive impairment in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. J. Neurol. (2003) 250:1340–7. 10.1007/s00415-003-0222-1 PubMed DOI

Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. (2004) 35:2598–603. 10.1161/01.str.0000143725.19053.60 PubMed DOI

Seiler A, Deichmann R, Nöth U, Lauer A, Pfeilschifter W, Singer OC, et al. . Extent of microstructural tissue damage correlates with hemodynamic failure in high-grade carotid occlusive disease: an mri study using quantitative T2 and DSC perfusion. Am J Neuroradiol. (2018) 39:1273–9. 10.3174/ajnr.A5666 PubMed DOI PMC

Seiler A, Brandhofe A, Gracien R-M, Pfeilschifter W, Hattingen E, Deichmann R, et al. . DSC perfusion-based collateral imaging and quantitative T2 mapping to assess regional recruitment of leptomeningeal collaterals and microstructural cortical tissue damage in unilateral steno-occlusive vasculopathy. J Cereb Blood Flow Metab. (2021) 41:67–81. 10.1177/0271678X19898148 PubMed DOI PMC

Wagner M, Helfrich M, Volz S, Magerkurth J, Blasel S, Porto L, et al. . Quantitative T2, T2*, and T2′ MR imaging in patients with ischemic leukoaraiosis might detect microstructural changes and cortical hypoxia. Neuroradiology. (2015) 57:1023–30. 10.1007/s00234-015-1565-x PubMed DOI

Muñoz Maniega S, Chappell FM, Valdés Hernández MC, Armitage PA, Makin SD, Heye AK, et al. . Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J Cereb Blood Flow Metab. (2017) 37:644–56. 10.1177/0271678X16635657 PubMed DOI PMC

Wardlaw JM, Makin SJ, Valdés Hernández MC, Armitage PA, Heye AK, Chappell FM, et al. . Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimer Dem. (2017) 13:634–43. 10.1016/j.jalz.2016.09.006 DOI

Siemonsen S, Mouridsen K, Holst B, Ries T, Finsterbusch J, Thomalla G, et al. . Quantitative t2 values predict time from symptom onset in acute stroke patients. Stroke. (2009) 40:1612–6. 10.1161/STROKEAHA.108.542548 PubMed DOI

Duchaussoy T, Budzik J-F, Norberciak L, Colas L, Pasquini M, Verclytte S. Synthetic T2 mapping is correlated with time from stroke onset: a future tool in wake-up stroke management? Eur Radiol. (2019) 29:7019–26. 10.1007/s00330-019-06270-0 PubMed DOI

McGarry BL, Damion RA, Chew I, Knight MJ, Harston GW, Carone D, et al. . A comparison of T2 relaxation-based MRI stroke timing methods in hyperacute ischemic stroke patients: a pilot study. J Cent Nerv Syst Dis. (2020) 12:1179573520943314. 10.1177/1179573520943314 PubMed DOI PMC

Cho Z-H, Oh S-H, Kim J-M, Park S-Y, Kwon D-H, Jeong H-J, et al. . Direct visualization of Parkinson's disease by in vivo human brain imaging using 7.0T magnetic resonance imaging. Mov Disord. (2011) 26:713–8. 10.1002/mds.23465 PubMed DOI

Suzuki S, Sakai O, Jara H. Combined volumetric T1, T2 and secular-T2 quantitative MRI of the brain: age-related global changes (preliminary results). Magn Reson Imaging. (2006) 24:877–87. 10.1016/j.mri.2006.04.011 PubMed DOI

Steen RG, Gronemeyer SA, Taylor JS. Age-related changes in proton T1 values of normal human brain. J Magn Reson Imaging. (1995) 5:43–8. PubMed

Breger RK, Yetkin FZ, Fischer ME, Papke RA, Haughton VM, Rimm AA. T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology. (1991) 181:545–7. 10.1148/radiology.181.2.1924802 PubMed DOI

Ogg RJ, Steen RG. Age-related changes in brain T1 are correlated with iron concentration. Magn Reson Med. (1998) 40:749–53. PubMed

Saito N, Sakai O, Ozonoff A, Jara H. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns. Magn Reson Imaging. (2009) 27:895–906. 10.1016/j.mri.2009.05.006 PubMed DOI

Gracien R-M, Nürnberger L, Hok P, Hof S-M, Reitz SC, Rüb U, et al. . Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years. Eur Radiol. (2017) 27:1568–76. 10.1007/s00330-016-4485-1 PubMed DOI

Seiler A, Schöngrundner S, Stock B, Nöth U, Hattingen E, Steinmetz H, et al. . Cortical aging – new insights with multiparametric quantitative MRI. Aging. (2020) 12:16195–210. 10.18632/aging.103629 PubMed DOI PMC

Siemonsen S, Finsterbusch J, Matschke J, Lorenzen A, Ding X-Q, Fiehler J. Age-dependent normal values of T2* and T2′ in brain parenchyma. AJNR Am J Neuroradiol. (2008) 29:950–5. 10.3174/ajnr.A0951 PubMed DOI PMC

Knight MJ, Wearn A, Coulthard E, Kauppinen RA. T2 relaxometry and diffusion tensor indices of the hippocampus and entorhinal cortex improve sensitivity and specificity of MRI to detect amnestic mild cognitive impairment and Alzheimer's disease dementia. J Magn Reson Imaging. (2019) 49:445–55. 10.1002/jmri.26195 PubMed DOI PMC

Knight MJ, McCann B, Tsivos D, Dillon S, Coulthard E, Kauppinen RA. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline. Phys Med Biol. (2016) 61:5587–605. 10.1088/0031-9155/61/15/5587 PubMed DOI PMC

Wearn AR, Nurdal V, Saunders-Jennings E, Knight MJ, Isotalus HK, Dillon S, et al. . T2 heterogeneity: a novel marker of microstructural integrity associated with cognitive decline in people with mild cognitive impairment. Alzheimers Res Ther. (2020) 12:105. 10.1186/s13195-020-00672-9 PubMed DOI PMC

House MJ, St Pierre TG, Foster JK, Martins RN, Clarnette R. Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. Am J Neuroradiol. (2006) 27:430–9. PubMed PMC

Granziera C, Daducci A, Donati A, Bonnier G, Romascano D, Roche A, et al. . A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment. Neuroimage Clin. (2015) 8:631–9. 10.1016/j.nicl.2015.06.003 PubMed DOI PMC

Pyatigorskaya N, Gallea C, Garcia-Lorenzo D, Vidailhet M, Lehericy S. A review of the use of magnetic resonance imaging in Parkinson's disease. Ther Adv Neurol Disord. (2014) 7:206–20. 10.1177/1756285613511507 PubMed DOI PMC

Graham JM. Brain iron deposition in Parkinson's disease imaged using the PRIME magnetic resonance sequence. Brain. (2000) 123:2423–31. 10.1093/brain/123.12.2423 PubMed DOI

Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med. (1994) 32:335–41. 10.1002/mrm.1910320309 PubMed DOI

Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: A potential biomarker of disease status. Neurology. (2008) 70:1411–7. 10.1212/01.wnl.0000286384.31050.b5 PubMed DOI

Baudrexel S, Nürnberger L, Rüb U, Seifried C, Klein JC, Deller T, et al. . Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. Neuroimage. (2010) 51:512–20. 10.1016/j.neuroimage.2010.03.005 PubMed DOI

Nürnberger L, Gracien R-M, Hok P, Hof S-M, Rüb U, Steinmetz H, et al. . Longitudinal changes of cortical microstructure in Parkinson's disease assessed with T1 relaxometry. NeuroImage: Clinical. (2017) 13:405–14. 10.1016/j.nicl.2016.12.025 PubMed DOI PMC

Klein JC, Rolinski M, Griffanti L, Szewczyk-Krolikowski K, Baig F, Ruffmann C, et al. . Cortical structural involvement and cognitive dysfunction in early Parkinson's disease. NMR Biomed. (2018) 31:3900. 10.1002/nbm.3900 PubMed DOI

Boelmans K, Holst B, Hackius M, Finsterbusch J, Gerloff C, Fiehler J, et al. . Brain iron deposition fingerprints in Parkinson's disease and progressive supranuclear palsy. Mov Disord. (2012) 27:421–7. 10.1002/mds.24926 PubMed DOI

Forkert ND, Schmidt-Richberg A, Holst B, Münchau A, Handels H, Boelmans K. Image-based classification of parkinsonian syndromes using T2′-atlases. Stud Health Technol Inform. (2011) 169:465–9. 10.3233/978-1-60750-806-9-465 PubMed DOI

Gracien R-M, Petrov F, Hok P, van Wijnen A, Maiworm M, Seiler A, et al. . Multimodal quantitative MRI reveals no evidence for tissue pathology in idiopathic cervical dystonia. Front Neurol. (2019) 10:914. 10.3389/fneur.2019.00914 PubMed DOI PMC

Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, et al. . hMRI – A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage. (2019) 194:191–210. 10.1016/j.neuroimage.2019.01.029 PubMed DOI PMC

Hagiwara A, Warntjes M, Hori M, Andica C, Nakazawa M, Kumamaru KK, et al. . SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol. (2017) 52:647–57. 10.1097/RLI.0000000000000365 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...