• This record comes from PubMed

Longitudinal changes of cortical microstructure in Parkinson's disease assessed with T1 relaxometry

. 2017 ; 13 () : 405-414. [epub] 20161221

Language English Country Netherlands Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
J-0901 Parkinson's UK - United Kingdom

Links

PubMed 28116233
PubMed Central PMC5226811
DOI 10.1016/j.nicl.2016.12.025
PII: S2213-1582(16)30262-5
Knihovny.cz E-resources

BACKGROUND: Histological evidence suggests that pathology in Parkinson's disease (PD) goes beyond nigrostriatal degeneration and also affects the cerebral cortex. Quantitative MRI (qMRI) techniques allow the assessment of changes in brain tissue composition. However, the development and pattern of disease-related cortical changes have not yet been demonstrated in PD with qMRI methods. The aim of this study was to investigate longitudinal cortical microstructural changes in PD with quantitative T1 relaxometry. METHODS: 13 patients with mild to moderate PD and 20 matched healthy subjects underwent high resolution T1 mapping at two time points with an interval of 6.4 years (healthy subjects: 6.5 years). Data from two healthy subjects had to be excluded due to MRI artifacts. Surface-based analysis of cortical T1 values was performed with the FreeSurfer toolbox. RESULTS: In PD patients, a widespread decrease of cortical T1 was detected during follow-up which affected large parts of the temporo-parietal and occipital cortices and also frontal areas. In contrast, age-related T1 decrease in the healthy control group was much less pronounced and only found in lateral frontal, parietal and temporal areas. Average cortical T1 values did not differ between the groups at baseline (p = 0.17), but were reduced in patients at follow-up (p = 0.0004). Annualized relative changes of cortical T1 were higher in patients vs. healthy subjects (patients: - 0.72 ± 0.64%/year; healthy subjects: - 0.17 ± 0.41%/year, p = 0.007). CONCLUSIONS: In patients with PD, the development of widespread changes in cortical microstructure was observed as reflected by a reduction of cortical T1. The pattern of T1 decrease in PD patients exceeded the normal T1 decrease as found in physiological aging and showed considerable overlap with the pattern of cortical thinning demonstrated in previous PD studies. Therefore, cortical T1 might be a promising additional imaging marker for future longitudinal PD studies. The biological mechanisms underlying cortical T1 reductions remain to be further elucidated.

See more in PubMed

Aarsland D., Bronnick K., Williams-Gray C., Weintraub D., Marder K., Kulisevsky J., Burn D., Barone P., Pagonabarraga J., Allcock L., Santangelo G., Foltynie T., Janvin C., Larsen J.P., Barker R.A., Emre M. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–1069. PubMed PMC

Abe Y., Kachi T., Kato T., Arahata Y., Yamada T., Washimi Y., Iwai K., Ito K., Yanagisawa N., Sobue G. Occipital hypoperfusion in Parkinson's disease without dementia: correlation to impaired cortical visual processing. J. Neurol. Neurosurg. Psychiatry. 2003;74(4):419–422. PubMed PMC

Barker R.A., Williams-Gray C.H. Mild cognitive impairment and Parkinson's disease—something to remember. J. Park. Dis. 2014;4(4):651–656. PubMed

Baudrexel S., Nürnberger L., Rüb U., Seifried C., Klein J.C., Deller T., Steinmetz H., Deichmann R., Hilker R. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. NeuroImage. 2010;51(2):512–520. PubMed

Bohnen N.I., Minoshima S., Giordani B., Frey K.A., Kuhl D.E. Motor correlates of occipital glucose hypometabolism in Parkinson's disease without dementia. Neurology. 1999;52(3):541–546. PubMed

Braak H., Del Tredici K., Rüb U., de Vos R.A.I., Steur J., Ernst N.H., Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging. 2003;24(2):197–211. PubMed

Brooks R.A., Vymazal J., Goldfarb R.B., Bulte J.W., Aisen P. Relaxometry and magnetometry of ferritin. Magn. Reson. Med. 1998;40(2):227–235. PubMed

Button K.S., Ioannidis J.P.A., Mokrysz C., Nosek B.A., Flint J., Robinson E.S.J., Munafo M.R. Power failure: why small sample size undermines the reliability of neuroscience. Nature reviews. Neuroscience. 2013;14(5):365–376. PubMed

Dale A.M., Fischl B., Sereno M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–194. PubMed

Daugherty A.M., Raz N. Appraising the role of iron in brain aging and cognition: promises and limitations of MRI methods. Neuropsychol. Rev. 2015;25(3):272–287. PubMed PMC

Deoni S.C.L. Quantitative relaxometry of the brain. Top. Magn. Reson. Imaging: TMRI. 2010;21(2):101–113. PubMed PMC

Deoni S.C.L., Peters T.M., Rutt B.K. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn. Reson. Med. 2005;53(1):237–241. PubMed

Dexter D.T., Carayon A., Javoy-Agid F., Agid Y., Wells F.R., Daniel S.E., Lees A.J., Jenner P., Marsden C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain: J. Neurol. 1991;114(Pt 4):1953–1975. PubMed

Dexter D.T., Carayon A., Vidailhet M., Ruberg M., Agid F., Agid Y., Lees A.J., Wells F.R., Jenner P., Marsden C.D. Decreased ferritin levels in brain in Parkinson's disease. J. Neurochem. 1990;55(1):16–20. PubMed

Dexter D.T., Jenner P., Schapira A.H., Marsden C.D. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The royal kings and queens Parkinson's disease research group. Ann. Neurol. 1992;32:100. Suppl. PubMed

Dexter D.T., Wells F.R., Lees A.J., Agid F., Agid Y., Jenner P., Marsden C.D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J. Neurochem. 1989;52(6):1830–1836. PubMed

Dickstein D.L., Kabaso D., Rocher A.B., Luebke J.I., Wearne S.L., Hof P.R. Changes in the structural complexity of the aged brain. Aging Cell. 2007;6(3):275–284. PubMed PMC

Du G., Lewis M.M., Styner M., Shaffer M.L., Sen S., Yang Q.X., Huang X. Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson's disease. Mov. Disord.: Off. J. Mov. Disord. Soc. 2011;26(9):1627–1632. PubMed PMC

Fatouros P.P., Marmarou A., Kraft K.A., Inao S., Schwarz F.P. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn. Reson. Med. 1991;17(2):402–413. PubMed

Ferrer I. Early involvement of the cerebral cortex in Parkinson's disease: convergence of multiple metabolic defects. Prog. Neurobiol. 2009;88(2):89–103. PubMed

Ferrer I., Martinez A., Blanco R., Dalfo E., Carmona M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J. Neural Transm. (Vienna, Austria: 1996) 2011;118(5):821–839. PubMed

Fischl B., Sereno M.I., Dale A.M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207. PubMed

Freeman S.H., Kandel R., Cruz L., Rozkalne A., Newell K., Frosch M.P., Hedley-Whyte E.T., Locascio J.J., Lipsitz L.A., Hyman B.T. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J. Neuropathol. Exp. Neurol. 2008;67(12):1205–1212. PubMed PMC

Friston K. Ten ironic rules for non-statistical reviewers. NeuroImage. 2012;61(4):1300–1310. PubMed

Gelman N., Ewing J.R., Gorell J.M., Spickler E.M., Solomon E.G. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn. Reson. Med. 2001;45(1):71–79. PubMed

Gerhard A., Pavese N., Hotton G., Turkheimer F., Es M., Hammers A., Eggert K., Oertel W., Banati R.B., Brooks D.J. In vivo imaging of microglial activation with 11C(R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 2006;21(2):404–412. PubMed

Gorell J.M., Ordidge R.J., Brown G.G., Deniau J.C., Buderer N.M., Helpern J.A. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease. Neurology. 1995;45(6):1138–1143. PubMed

Gracien R.-M., Nürnberger L., Hok P., Hof S.-M., Reitz S.C., Rub U., Steinmetz H., Hilker-Roggendorf R. Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years. Eur. Radiol. 2016 PubMed

Hallgren B., Sourander P. The effect of age on the non-haemin iron in the human brain. J. Neurochem. 1958;3(1):41–51. PubMed

Halliday G.M., MacDonald V., Henderson J.M. A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson's disease. Brain: J. Neurol. 2005;128(Pt 10):2272–2280. PubMed

Hanganu A., Bedetti C., Degroot C., Mejia-Constain B., Lafontaine A.-L., Soland V., Chouinard S., Bruneau M.-A., Mellah S., Belleville S., Monchi O. Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson's disease longitudinally. Brain. 2014 10.1093/brain/awu036 awu036. PubMed DOI

Hare D.J., Ayton S., Bush A.I., Lei P. A delicate balance: iron metabolism and diseases of the brain. Front. Aging Neurosci. 2013;5:34. PubMed PMC

Hoehn M.M., Yahr M.D. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–442. PubMed

Hornykiewicz O. The discovery of dopamine deficiency in the parkinsonian brain. J. Neural Transm. 2006;70:9–15. Supplementum. PubMed

Hughes A.J., Daniel S.E., Kilford L., Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55(3):181–184. PubMed PMC

Ibarretxe-Bilbao N., Junque C., Segura B., Baggio H.C., Marti M.J., Valldeoriola F., Bargallo N., Tolosa E. Progression of cortical thinning in early Parkinson's disease. Mov. Disord.: Off. J. Mov. Disord. Soc. 2012;27(14):1746–1753. PubMed

Irwin D.J., Lee V.M., Trojanowski J.Q. Parkinson's disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat. Rev. Neurosci. 2013;14(9):626–636. PubMed PMC

Jellinger K.A. The morphological basis of mental dysfunction in Parkinson's disease. J. Neurol. Sci. 2006;248(1–2):167–172. PubMed

Jellinger K.A. Formation and development of Lewy pathology: a critical update. J. Neurol. 2009;256(Suppl. 3):270–279. PubMed

Jia X., Liang P., Li Y., Shi L., Wang D., Li K. Longitudinal study of gray matter changes in Parkinson disease. Am. J. Neuroradiol. 2015;36(12):2219–2226. PubMed PMC

Levy G. The relationship of Parkinson disease with aging. Arch. Neurol. 2007;64(9):1242–1246. PubMed

Loeffler D.A., Connor J.R., Juneau P.L., Snyder B.S., Kanaley L., DeMaggio A.J., Nguyen H., Brickman C.M., LeWitt P.A. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 1995;65(2):710–724. PubMed

Lutti A., Dick F., Sereno M.I., Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage. 2014;93(Pt 2):176–188. PubMed

MacDonald V., Halliday G.M. Selective loss of pyramidal neurons in the pre-supplementary motor cortex in Parkinson's disease. Mov. Disord.: Off. J. Mov. Disord. Soc. 2002;17(6):1166–1173. PubMed

Mak E., Su L., Williams G.B., Firbank M.J., Lawson R.A., Yarnall A.J., Duncan G.W., Owen A.M., Khoo T.K., Brooks D.J., Rowe J.B., Barker R.A., Burn D.J., O'Brien J.T. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson's disease: ICICLE-PD study. Brain. 2015;138(10):2974–2986. PubMed PMC

Martin W.R., Wieler M., Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70(16 Pt 2):1411–1417. PubMed

McCann H., Cartwright H., Halliday G.M. Neuropathology of α-synuclein propagation and braak hypothesis. Mov. Disord.: Off. J. Mov. Disord. Soc. 2016;31(2):152–160. PubMed

McGeer P.L., McGeer E.G. Glial reactions in Parkinson's disease. Mov. Disord.: Off. J. Mov. Disord. Soc. 2008;23(4):474–483. PubMed

Menke R.A., Jbabdi S., Miller K.L., Matthews P.M., Zarei M. Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease. NeuroImage. 2010;52(4):1175–1180. PubMed

Mondino F., Filippi P., Magliola U., Duca S. Magnetic resonance relaxometry in Parkinson's disease. Neurol. Sci.: Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2002;23(Suppl. 2):8. PubMed

Neeb H., Zilles K., Shah N.J. Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. NeuroImage. 2006;29(3):910–922. PubMed

Olanow C.W. The pathogenesis of cell death in Parkinson's disease—2007. Movement Disord.: Off. J. Mov. Disord. Soc. 2007;22(Suppl. 17):42. PubMed

Pakkenberg B., Pelvig D., Marner L., Bundgaard M.J., Gundersen H.J.G., Nyengaard J.R., Regeur L. Aging and the human neocortex. Exp. Gerontol. 2003;38(1–2):95–99. PubMed

Patenaude B., Smith S.M., Kennedy D.N., Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56(3):907–922. PubMed PMC

Preibisch C., Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 2009;61(1):125–135. PubMed

Reuter M., Schmansky N.J., Rosas H.D., Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61(4):1402–1418. PubMed PMC

Rooney W.D., Johnson G., Li X., Cohen E.R., Kim S.-G., Ugurbil K., Springer C.S. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn. Reson. Med. 2007;57(2):308–318. PubMed

Scheff S.W., Neltner J.H., Nelson P.T. Is synaptic loss a unique hallmark of Alzheimer's disease? Biochem. Pharmacol. 2014;88(4):517–528. PubMed PMC

Schenck J.F. Imaging of brain iron by magnetic resonance: T2 relaxation at different field strengths. J. Neurol. Sci. 1995;134(Suppl):10–18. PubMed

Schenck J.F. Magnetic resonance imaging of brain iron. J. Neurol. Sci. 2003;207(1–2):99–102. PubMed

Stankiewicz J., Panter S.S., Neema M., Arora A., Batt C.E., Bakshi R. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurother.: J. Am. Soc. Exp. NeuroTher. 2007;4(3):371–386. PubMed PMC

Sterling N.W., Wang M., Zhang L., Lee E.-Y., Du G., Lewis M.M., Styner M., Huang X. Stage-dependent loss of cortical gyrification as Parkinson disease "unfolds". Neurology. 2016;86(12):1143–1151. PubMed PMC

Tessa C., Lucetti C., Giannelli M., Diciotti S., Poletti M., Danti S., Baldacci F., Vignali C., Bonuccelli U., Mascalchi M., Toschi N. Progression of brain atrophy in the early stages of Parkinson's disease: a longitudinal tensor-based morphometry study in de novo patients without cognitive impairment. Hum. Brain Mapp. 2014;35(8):3932–3944. PubMed PMC

Tofts P., editor. Quantitative MRI of the Brain: Measuring Changes Caused by Disease. John Wiley and Sons Ltd.; 2003. (650 pp. index Hardback)

Ulla M., Bonny J.M., Ouchchane L., Rieu I., Claise B., Durif F. Is R2* a new MRI biomarker for the progression of Parkinson's disease? A longitudinal follow-up. PLoS One. 2013;8(3) PubMed PMC

Uribe C., Segura B., Baggio H.C., Abos A., Marti M.J., Valldeoriola F., Compta Y., Bargallo N., Junque C. Patterns of cortical thinning in nondemented Parkinson's disease patients. Mov. Disord.: Off. J. Mov. Disord. Soc. 2016;31(5):699–708. PubMed PMC

Uversky V.N., Eliezer D. Biophysics of Parkinson's disease: structure and aggregation of alpha-synuclein. Curr. Protein Pept. Sci. 2009;10(5):483–499. PubMed PMC

Vymazal J., Brooks R.A., Zak O., McRill C., Shen C., Di Chiro G. T1 and T2 of ferritin at different field strengths: effect on MRI. Magn. Reson. Med. 1992;27(2):368–374. PubMed

Vymazal J., Righini A., Brooks R.A., Canesi M., Mariani C., Leonardi M., Pezzoli G. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology. 1999;211(2):489–495. PubMed

Yarnykh V.L. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn. Reson. Med. 2007;57(1):192–200. PubMed

Yu X., Du T., Song N., He Q., Shen Y., Jiang H., Xie J. Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease. Neurology. 2013;80(5):492–495. PubMed PMC

Zarei M., Ibarretxe-Bilbao N., Compta Y., Hough M., Junque C., Bargallo N., Tolosa E., Marti M.J. Cortical thinning is associated with disease stages and dementia in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry. 2013;84(8):875–881. PubMed PMC

Zhan S.S., Beyreuther K., Schmitt H.P. Quantitative assessment of the synaptophysin immuno-reactivity of the cortical neuropil in various neurodegenerative disorders with dementia. Dementia (Basel, Switzerland) 1993;4(2):66–74. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Multiparametric Quantitative MRI in Neurological Diseases

. 2021 ; 12 () : 640239. [epub] 20210308

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...