Divergent clonal selection dominates medulloblastoma at recurrence
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 CA077598
NCI NIH HHS - United States
R01CA159859
NCI NIH HHS - United States
CIHR - Canada
R01 CA159859
NCI NIH HHS - United States
P30 CA030199
NCI NIH HHS - United States
R01 CA113636
NCI NIH HHS - United States
R01 NS096236
NINDS NIH HHS - United States
R01CA148699
NCI NIH HHS - United States
R01 CA163722
NCI NIH HHS - United States
R01 CA148699
NCI NIH HHS - United States
13457
Cancer Research UK - United Kingdom
PubMed
26760213
PubMed Central
PMC4936195
DOI
10.1038/nature16478
PII: nature16478
Knihovny.cz E-zdroje
- MeSH
- buněčné klony účinky léků metabolismus patologie MeSH
- cílená molekulární terapie metody MeSH
- Drosophila melanogaster cytologie genetika MeSH
- genom lidský genetika MeSH
- kraniospinální iradiace MeSH
- lidé MeSH
- lokální recidiva nádoru genetika patologie terapie MeSH
- meduloblastom genetika patologie radioterapie chirurgie terapie MeSH
- modely nemocí na zvířatech MeSH
- mutační analýza DNA MeSH
- myši MeSH
- nádory mozečku genetika patologie radioterapie chirurgie terapie MeSH
- radioterapie řízená obrazem MeSH
- selekce (genetika) účinky léků MeSH
- signální transdukce MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.
A 1 duPont Hospital for Children Wilmington Delaware 19803 USA
Center for Neuropathology Ludwig Maximilians Universität Munich 81377 Germany
Center for Stem Cell and Regenerative Medicine Cleveland Clinic Foundation Cleveland Ohio 44195 USA
Children's University Hospital of Essen D 45147 Germany
Clinical Cooperation Unit Neuropathology German Cancer Research Center Heidelberg 69120 Germany
Department of Haematology and Oncology The Hospital for Sick Children Toronto Ontario M5G 1X8 Canada
Department of Molecular Oncology BC Cancer Agency Vancouver British Columbia V5Z 1L3 Canada
Department of Neurology Children's National Medical Center Washington DC 20010 2970 USA
Department of Neurology Vanderbilt Medical Center Nashville Tennessee 37232 8550 USA
Department of Neurosurgery Kitasato University School of Medicine Sagamihara Kanagawa 252 0374 Japan
Department of Neurosurgery NYU Langone Medical Center New York New York 10016 USA
Department of Neurosurgery Tohoku University Graduate School of Medicine Sendai 980 8574 Japan
Department of Neurosurgery University of Ulsan Asan Medical Center Seoul 05505 South Korea
Department of Pathology University of Cambridge Cambridge CB2 1QP UK
Department of Pediatric Oncology School of Medicine Masaryk University Brno 625 00 Czech Republic
Department of Pediatric Oncology University Hospital Heidelberg Heidelberg 69120 Germany
Department of Pediatrics University of Toronto Toronto Ontario M5G 1X8 Canada
Department of Radiation Oncology University of Toronto Toronto Ontario M5G 2M9 Canada
Division of Hematology Oncology McGill University Montreal Quebec H2W 1S6 Canada
Division of Neurosurgery The Hospital for Sick Children Toronto Ontario M5S 3E1 Canada
Division of Oncology Children's Health Queensland Brisbane Queensland 4029 Australia
Division of Pathology The Hospital for Sick Children Toronto Ontario M5G 1X8 Canada
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg 69120 Germany
Divison of Pathology Centro Hospitalar Lisboa Norte Hospital de Santa Maria Lisbon 1649 035 Portugal
Fondazione IRCCS Istituto Nazionale Tumori Milan 20133 Italy
Institute for Neuropathology University of Bonn D 53105 Germany
Kolling Institute of Medical Research The University of Sydney Sydney New South Wales 2065 Australia
Masonic Cancer Center University of Minnesota Minneapolis Minnesota 55455 USA
Molecular and Cellular Biology Program University of Iowa Iowa City Iowa 52242 USA
Northern Institute for Cancer Research Newcastle University Newcastle upon Tyne NE1 4LP UK
Pediatric Neurosurgery Catholic University Medical School Rome 00198 Italy
Sanford Burnham Medical Research Institute La Jolla California 92037 USA
School of Computing Science Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
School of Pharmacology University of Wisconsin Madison Wisconsin 53715 USA
The Donnelly Centre University of Toronto Toronto Ontario M5S 3E1 Canada
U O Neurochirurgia Istituto Giannina Gaslini Genova 16147 Italy
UQ Child Health Research Centre The University of Queensland Brisbane 4029 Australia
Zobrazit více v PubMed
Hovestadt V, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 2014;510:537–541. PubMed
Jones DT, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488:100–105. PubMed PMC
Kool M, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25:393–405. PubMed PMC
Northcott PA, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature. 2014;511:428–434. PubMed PMC
Northcott PA, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56. PubMed PMC
Pugh TJ, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488:106–110. PubMed PMC
Wu X, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012;482:529–533. PubMed PMC
Moxon-Emre I, et al. Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. J. Clin. Oncol. 2014;32:1760–1768. PubMed
Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nature Rev. Neurol. 2012;8:340–351. PubMed
Northcott PA, et al. Medulloblastomics: the end of the beginning. Nature Rev. Cancer. 2012;12:818–834. PubMed PMC
Ramaswamy V, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14:1200–1207. PubMed PMC
Anderson K, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469:356–361. PubMed
Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–345. PubMed
Ding L, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–510. PubMed PMC
Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–313. PubMed PMC
Landau DA, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–726. PubMed PMC
Mullighan CG, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322:1377–1380. PubMed PMC
Johnson BE, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343:189–193. PubMed PMC
Shah SP, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461:809–813. PubMed
Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer. 2010;103:1139–1143. PubMed PMC
Eirew P, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518:422–426. PubMed PMC
Kreso A, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science. 2013;339:543–548. PubMed PMC
Notta F, et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469:362–367. PubMed
Mumert M, et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res. 2012;72:4944–4953. PubMed PMC
Brett BT, et al. Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors. PLoS ONE. 2011;6:e24668. PubMed PMC
Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature. 2005;436:272–276. PubMed
Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature. 2005;436:221–226. PubMed
Zhukova N, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J. Clin. Oncol. 2013;31:2927–2935. PubMed PMC
Zhu S, et al. The bHLH repressor Deadpan regulates the self-renewal and specification of Drosophila larval neural stem cells independently of Notch. PLoS ONE. 2012;7:e46724. PubMed PMC
Ollmann M, et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell. 2000;101:91–101. PubMed
Fraley C, Raftery EA, Murphy TB, Scrucca L. mclust Version 4 for R. Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. 2012 Technical Report No. 597.
Remke M, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 2013;126:917–929. PubMed PMC
Govind SK, et al. ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinformatics. 2014;15:78. PubMed PMC
Griffith M, et al. DGIdb: mining the druggable genome. Nature Methods. 2013;10:1209–1210. PubMed PMC
McGranahan N, Swanton C. Perspective biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15–26. PubMed
Andor N, Harness JV, Müller S, Mewes HW, Petritsch C. EXPANDS: expanding ploidy and allele frequency on nested subpopulations. Bioinformatics. 2014;30:50–60. PubMed PMC
Maley CC, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet. 2006;38:468–473. PubMed
Roth A, et al. PyClone: statistical inference of clonal population structure in cancer. Nature Methods. 2014;11:396–398. PubMed PMC
Hill RM, et al. Combined Myc and p53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72–84. PubMed PMC
Wang X, et al. Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathol. 2015;129:449–457. PubMed PMC
Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N. Engl. J. Med. 2013;368:842–851. PubMed
Maley CC, Reid BJ, Forrest S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol. Biomarkers Prev. 2004;13:1375–1384. PubMed
Clarkson R, et al. Characterization of image quality and image-guidance performance of a preclinical microirradiator. Med. Phys. 2011;38:845–856. PubMed PMC
Ma CM, et al. AAPM protocol for 40–300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med. Phys. 2001;28:868–893. PubMed
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
McKenna A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
Cingolani P, et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 2012;3 http://dx.doi.org/10.3389/fgene.2012.00035. PubMed DOI PMC
Saunders CT, et al. Strelka: Accurate somatic small-variant calling from sequenced tumour-normal sample pairs. Bioinformatics. 2012;28:1811–1817. PubMed
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Fischer A, Illingworth CJ, Campbell PJ, Mustonen V. EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome Biol. 2013;14:R39. PubMed PMC
Jones SJ, et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol. 2010;11:R82. PubMed PMC
Shah SP, et al. Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics. 2006;22:431–439. PubMed
Boeva V, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics. 2012;28:423–425. PubMed PMC
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000;132:365–386. PubMed
Cibulskis K, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnol. 2013;31:213–219. PubMed PMC
Vanner RJ, et al. Quiescent Sox2+ cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell. 2014;26:33–47. PubMed PMC
Shih DJH, et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 2014;32:886–896. PubMed PMC
Cho Y-J, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 2011;29:1424–1430. PubMed PMC
Butterfield YS, et al. JAGuaR: junction alignments to genome for RNA-seq reads. PLoS ONE. 2014;9:e102398. PubMed PMC
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA. 2005;102:15545–15550. PubMed PMC
The transcriptional landscape of Shh medulloblastoma
Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma
A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases
Intertumoral Heterogeneity within Medulloblastoma Subgroups