The transcriptional landscape of Shh medulloblastoma
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA235162
NCI NIH HHS - United States
T32 CA151022
NCI NIH HHS - United States
P41 GM103504
NIGMS NIH HHS - United States
HHSN261200800001C
NCI NIH HHS - United States
P50 CA097257
NCI NIH HHS - United States
P30 CA014236
NCI NIH HHS - United States
T32 GM007618
NIGMS NIH HHS - United States
T32 GM141323
NIGMS NIH HHS - United States
R01 NS106155
NINDS NIH HHS - United States
R01 CA159859
NCI NIH HHS - United States
P30 CA015083
NCI NIH HHS - United States
P50 CA211015
NCI NIH HHS - United States
R01 CA148699
NCI NIH HHS - United States
HHSN268201000029C
NHLBI NIH HHS - United States
Cancer Research UK - United Kingdom
HHSN261200800001E
NCI NIH HHS - United States
PubMed
33741928
PubMed Central
PMC7979819
DOI
10.1038/s41467-021-21883-0
PII: 10.1038/s41467-021-21883-0
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- genetická variace MeSH
- genové regulační sítě MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- meduloblastom genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory mozečku genetika MeSH
- předškolní dítě MeSH
- proteiny hedgehog genetika MeSH
- regulace genové exprese u nádorů * MeSH
- signální transdukce genetika MeSH
- transkriptom * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny hedgehog MeSH
- SHH protein, human MeSH Prohlížeč
Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.
2nd Department of Pediatrics Semmelweis University Budapest Hungary
Adaptive Oncology Ontario Institute for Cancer Research Toronto ON Canada
Alberta Children's Hospital Research Institute Calgary AB Canada
Canada's Michael Smith Genome Sciences Centre BC Cancer Agency Vancouver BC Canada
Cancer Research Program Research Institute of the McGill University Health Centre Montreal QC Canada
Charbonneau Cancer Institute University of Calgary Calgary AB Canada
Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA United States
Computational Biology Program Ontario Institute for Cancer Research Toronto ON Canada
Department of Cell and Systems Biology University of Toronto Toronto ON Canada
Department of Human Genetics McGill University Montreal QC Canada
Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN United States
Department of Medical Biophysics University of Toronto Toronto ON Canada
Department of Medical Genetics University of British Columbia Vancouver BC Canada
Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC Canada
Department of Molecular Genetics University of Toronto Toronto ON Canada
Department of Neurological Surgery Vanderbilt Medical Center Nashville TN United States
Department of Neurology Erasmus University Medical Center Rotterdam Netherlands
Department of Neurology University of California San Francisco San Francisco CA United States
Department of Neurology Vanderbilt Medical Center Nashville TN United States
Department of Neurosurgery Duke University Durham NC United States
Department of Neurosurgery Kitasato University School of Medicine Sagamihara Kanagawa Japan
Department of Neurosurgery University of Alabama at Birmingham Birmingham AL United States
Department of Neurosurgery University of Debrecen Medical and Health Science Centre Debrecen Hungary
Department of Neurosurgery University of Ulsan Asan Medical Center Seoul South Korea
Department of Pathology and Laboratory Medicine Hamilton General Hospital Hamilton ON Canada
Department of Pathology Duke University Durham NC United States
Department of Pathology Erasmus University Medical Center Rotterdam Netherlands
Department of Pathology The Children's Memorial Health Institute Warsaw Poland
Department of Pathology University of California San Francisco San Francisco CA United States
Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA United States
Department of Pediatric Oncology Masaryk University School of Medicine Brno Czech Republic
Department of Pediatrics University of California San Francisco San Francisco CA United States
Department of Pediatrics University of Colorado Denver Aurora CO United States
Department of Surgery The Chinese University of Hong Kong Shatin New Territories Hong Kong
Department of Surgery University of Toronto Toronto ON Canada
Developmental and Stem Cell Biology Program The Hospital for Sick Children Toronto ON Canada
Division of Experimental Medicine McGill University Montreal QC Canada
Division of Neurosurgery Centro Hospitalar Lisboa Norte Hospital de Santa Maria Lisbon Portugal
Division of Neurosurgery The Hospital for Sick Children Toronto ON Canada
Division of Neurosurgery Toronto Western Hospital University Health Network Toronto ON Canada
Division of Pediatric Hematology Oncology Mayo Clinic Rochester MN United States
Division of Stem Cell Research Institute for Clinical Research Osaka National Hospital Osaka Japan
INSERM U 830 Institut Curie Paris France
Institute of Medical Science University of Toronto Toronto ON Canada
Institute of Neuropathology University Medical Center Hamburg Eppendorf Germany
McGill University Genome Centre McGill University Montreal QC Canada
Pediatric Hematology and Oncology University Medical Center Hamburg Eppendorf Germany
Research Institute Children's Cancer Center Hamburg Germany
SIREDO Center Institut Curie University of Paris Paris France
The Donnelly Centre University of Toronto Toronto ON Canada
Zobrazit více v PubMed
Stucklin ASG, Ramaswamy V, Daniels C, Taylor MD. Review of molecular classification and treatment implications of pediatric brain tumors. Curr. Opin. Pediatr. 2018;30:3–9. doi: 10.1097/MOP.0000000000000562. PubMed DOI
Taylor MD, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–472. doi: 10.1007/s00401-011-0922-z. PubMed DOI PMC
Cavalli FMG, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31:737–754.e6. doi: 10.1016/j.ccell.2017.05.005. PubMed DOI PMC
Suzuki H, et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature. 2019;574:707–711. doi: 10.1038/s41586-019-1650-0. PubMed DOI PMC
He X, et al. The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehog−driven medulloblastoma. Nat. Med. 2014;20:1035–1042. doi: 10.1038/nm.3666. PubMed DOI PMC
Rhayem Y, et al. Functional characterization of PRKAR1A mutations reveals a unique molecular mechanism causing acrodysostosis but multiple mechanisms causing carney complex. J. Biol. Chem. 2015;290:27816–27828. doi: 10.1074/jbc.M115.656553. PubMed DOI PMC
Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development. 1999;126:3915–3924. PubMed
Niewiadomski P, et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep. 2014;6:168–181. doi: 10.1016/j.celrep.2013.12.003. PubMed DOI PMC
Oghabi Bakhshaiesh T, Majidzadeh-A K, Esmaeili R. Wip1: a candidate phosphatase for cancer diagnosis and treatment. DNA Repair. 2017;54:63–66. doi: 10.1016/j.dnarep.2017.03.004. PubMed DOI
Kleiblova P, et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J. Cell Biol. 2013;201:511–521. doi: 10.1083/jcb.201210031. PubMed DOI PMC
Zajkowicz A, et al. Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients. Br. J. Cancer. 2015;112:1114–1120. doi: 10.1038/bjc.2015.79. PubMed DOI PMC
Zhang L, et al. Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat. Genet. 2014;46:726–730. doi: 10.1038/ng.2995. PubMed DOI PMC
Welcker M, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA. 2004;101:9085–9090. doi: 10.1073/pnas.0402770101. PubMed DOI PMC
Richards MW, et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl Acad. Sci. USA. 2016;113:13726–13731. doi: 10.1073/pnas.1610626113. PubMed DOI PMC
Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 2005;6:635–645. doi: 10.1038/nrm1703. PubMed DOI
Farrell AS, Sears RC. MYC degradation. Cold Spring Harb. Perspect. Med. 2014;4:1–15. doi: 10.1101/cshperspect.a014365. PubMed DOI PMC
Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer. 2008;8:83–93. doi: 10.1038/nrc2290. PubMed DOI
Thompson BJ, et al. The SCF FBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 2007;204:1825–1835. doi: 10.1084/jem.20070872. PubMed DOI PMC
O’Neil J, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 2007;204:1813–1824. doi: 10.1084/jem.20070876. PubMed DOI PMC
Close V, et al. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood. 2019;133:830–839. doi: 10.1182/blood-2018-09-874529. PubMed DOI
Gadd S, et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 2017;49:1487–1494. doi: 10.1038/ng.3940. PubMed DOI PMC
Northcott PA, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56. doi: 10.1038/nature11327. PubMed DOI PMC
Haas BJ, et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20:1–16. doi: 10.1186/s13059-019-1842-9. PubMed DOI PMC
Robertson G, et al. De novo assembly and analysis of RNA-seq data. Nat. Methods. 2010;7:909–912. doi: 10.1038/nmeth.1517. PubMed DOI
Okonechnikov K, et al. InFusion: advancing discovery of fusion genes and chimeric transcripts from deep RNA-sequencing data. PLoS ONE. 2016;11:e0167417. doi: 10.1371/journal.pone.0167417. PubMed DOI PMC
Rausch T, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148:59–71. doi: 10.1016/j.cell.2011.12.013. PubMed DOI PMC
Ratnaparkhe M, et al. Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat. Commun. 2018;9:4760. doi: 10.1038/s41467-018-06925-4. PubMed DOI PMC
Jepsen K, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell. 2000;102:753–763. doi: 10.1016/S0092-8674(00)00064-7. PubMed DOI
Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiation of neural stem cells into astrocytes. Nature. 2002;419:934–939. doi: 10.1038/nature01156. PubMed DOI
Huang M, et al. Engineering genetic predisposition in human neuroepithelial stem cells recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell. 2019;25:433–446.e7. doi: 10.1016/j.stem.2019.05.013. PubMed DOI PMC
Merk DJ, et al. Opposing effects of CREBBP mutations govern the phenotype of Rubinstein-Taybi syndrome and adult SHH Medulloblastoma. Dev. Cell. 2018;44:709–724.e6. doi: 10.1016/j.devcel.2018.02.012. PubMed DOI
Cedoz PL, Prunello M, Brennan K, Gevaert O. MethylMix 2.0: An R package for identifying DNA methylation genes. Bioinformatics. 2018;34:3044–3046. doi: 10.1093/bioinformatics/bty156. PubMed DOI PMC
Canisius S, Martens JWM, Wessels LFA. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence. Genome Biol. 2016;17:1–17. doi: 10.1186/s13059-016-1114-x. PubMed DOI PMC
Remke M, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 2013;126:917–929. doi: 10.1007/s00401-013-1198-2. PubMed DOI PMC
Lonsdale J, et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013;45:580–585. doi: 10.1038/ng.2653. PubMed DOI PMC
Morrissy AS, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature. 2016;529:351–357. doi: 10.1038/nature16478. PubMed DOI PMC
Wang B, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods. 2014;11:333–337. doi: 10.1038/nmeth.2810. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Auwera GA, et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinforma. 2013;43:11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43. PubMed DOI PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164–e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC
Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 2014;42:D109–D113. doi: 10.1093/nar/gkt996. PubMed DOI PMC
Li YI, et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 2018;50:151–158. doi: 10.1038/s41588-017-0004-9. PubMed DOI PMC
Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutationtaster2: mutation prediction for the deep-sequencing age. Nat. Methods. 2014;11:361–362. doi: 10.1038/nmeth.2890. PubMed DOI
Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39:37–43. doi: 10.1093/nar/gkr407. PubMed DOI PMC
Shiraishi Y, et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 2013;41:e89–e89. doi: 10.1093/nar/gkt126. PubMed DOI PMC
Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–218. doi: 10.1038/nature12213. PubMed DOI PMC
Wang K, et al. PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–1674. doi: 10.1101/gr.6861907. PubMed DOI PMC
Loo PVan, et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA. 2010;107:16910–16915. doi: 10.1073/pnas.1009843107. PubMed DOI PMC
Mermel CH, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12:R41. doi: 10.1186/gb-2011-12-4-r41. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Wu Z, Wu H. Visualizing Genomic Data Using Gviz and Bioconductor. Methods Mol. Biol. 2016;1418:335–351. doi: 10.1007/978-1-4939-3578-9_16. PubMed DOI
Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol. Med. 2014;9:13. doi: 10.1186/1751-0473-9-13. DOI
Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature534, 402–406 (2016). PubMed
Rausch T, et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–i339. doi: 10.1093/bioinformatics/bts378. PubMed DOI PMC
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
Yang J, Zhang Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–W181. doi: 10.1093/nar/gkv342. PubMed DOI PMC
Zhang C, Freddolino PL, Zhang Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res. 2017;45:W291–W299. doi: 10.1093/nar/gkx366. PubMed DOI PMC
Pettersen EF, et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Reimand J, et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Res. 2016;44:W83–W89. doi: 10.1093/nar/gkw199. PubMed DOI PMC
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE. 2010;5:e13984. doi: 10.1371/journal.pone.0013984. PubMed DOI PMC
Paul Shannon 1, et al. Cytoscape: a software environment for integrated models of biomolecular interaction. Netw. Genome Res. 2003;13:6. PubMed PMC
Sturm D, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–437. doi: 10.1016/j.ccr.2012.08.024. PubMed DOI
Hovestadt V, et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 2013;125:913–916. doi: 10.1007/s00401-013-1126-5. PubMed DOI PMC
Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45:e22. PubMed PMC
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Zhou X, et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat. Genet. 2015;48:4–6. doi: 10.1038/ng.3466. PubMed DOI PMC
Connors J, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Failure of human rhombic lip differentiation underlies medulloblastoma formation