Comparative analysis of pediatric SHH medulloblastoma DAOY spheres and adherent monolayers: implications for medulloblastoma research

. 2025 Jan 22 ; 25 (1) : 22. [epub] 20250122

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39844249

Grantová podpora
NHH, 174701 Ministry of Health, Czech Republic
68378050-KAV-NPUI Institutional funding - formal National Program for Sustainability

Odkazy

PubMed 39844249
PubMed Central PMC11756056
DOI 10.1186/s12935-025-03646-9
PII: 10.1186/s12935-025-03646-9
Knihovny.cz E-zdroje

Medulloblastoma, the most prevalent brain tumor among children, requires a comprehensive understanding of its cellular characteristics for effective research and treatment. In this study, we focused on DAOY, a permanent cell line of medulloblastoma, and investigated the unique properties of DAOY cells when cultured as floating multicellular aggregates called spheres, as opposed to adherent monolayers. Through our comprehensive analysis, we identified distinct characteristics associated with DAOY spheres. Our findings demonstrate that DAOY spheres express markers for both neural stem cells, such as CD133 (PROM1), and differentiated neurons, exemplified by MAP2. Additionally, our investigation revealed that spheres-derived cells exhibit heightened resistance to ionizing radiation compared to adherent cells. Consequently, our results indicate that caution is advised when interpreting experimental results obtained from adherent cell cultures and extrapolating them to in vivo situations.

Zobrazit více v PubMed

Northcott PA, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5:11. 10.1038/s41572-019-0063-6. PubMed

Northcott PA, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56. 10.1038/nature11327. PubMed PMC

Cavalli FMG et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31:737–754 e736. 10.1016/j.ccell.2017.05.005. PubMed PMC

Mulhern RK, et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol. 2005;23:5511–9. 10.1200/JCO.2005.00.703. PubMed

Yeole U, et al. What happens after Therapy? Quality of life and neurocognitive functions of children with malignant posterior Fossa tumors after Adjuvant Therapy. Neurol India. 2021;69:1293–301. 10.4103/0028-3886.329599. PubMed PMC

Schroeder K, Gururangan S. Molecular variants and mutations in medulloblastoma. Pharmgenomics Pers Med. 2014;7:43–51. 10.2147/PGPM.S38698. PubMed PMC

Skowron P, et al. The transcriptional landscape of shh medulloblastoma. Nat Commun. 2021;12:1749. 10.1038/s41467-021-21883-0. PubMed PMC

Zhukova N, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31:2927–35. 10.1200/JCO.2012.48.5052. PubMed PMC

Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: choosing the right tool for the job. J Biotechnol. 2016;236:10–25. 10.1016/j.jbiotec.2016.07.028. PubMed

Saylors RL 3, et al. Infrequent p53 gene mutations in medulloblastomas. Cancer Res. 1991;51:4721–3. PubMed

Jacobsen PF, Jenkyn DJ, Papadimitriou JM. Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol. 1985;44:472–85. 10.1097/00005072-198509000-00003. PubMed

Hai Sang U, Banaie A, Rigby L, Chen J. Mutant p53 may selectively suppress glial specific proteins in pluripotential human neuroectodermal tumor cells. Neurosci Lett. 1998;244:41–6. 10.1016/s0304-3940(98)00061-5. PubMed

Wick W, et al. Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res. 2002;62:1915–9. PubMed

Salaroli R, et al. Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin? J Neurooncol. 2008;90:243–51. 10.1007/s11060-008-9659-5. PubMed

Zanini C, et al. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications. PLoS ONE. 2013;8:e63748. 10.1371/journal.pone.0063748. PubMed PMC

Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8. PubMed

Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106:803–11. 10.1111/cas.12691. PubMed PMC

Sutter R, et al. Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene. 2010;29:1845–56. 10.1038/onc.2009.472. PubMed

Pizer BL, Clifford SC. The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg. 2009;23:364–75. 10.1080/02688690903121807. PubMed

Ivanov DP, et al. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS ONE. 2014;9:e103817. 10.1371/journal.pone.0103817. PubMed PMC

Neve A, Santhana Kumar K, Tripolitsioti D, Grotzer MA, Baumgartner M. Investigation of brain tissue infiltration by medulloblastoma cells in an ex vivo model. Sci Rep. 2017;7:5297. 10.1038/s41598-017-05573-w. PubMed PMC

Schonholzer MT, et al. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia. 2020;22:470–83. 10.1016/j.neo.2020.07.006. PubMed PMC

Roper SJ, Linke F, Scotting PJ, Coyle B. 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination. Sci Rep. 2021;11:4259. 10.1038/s41598-021-83809-6. PubMed PMC

Roper SJ, Coyle B. Establishing an in vitro 3D spheroid model to Study Medulloblastoma Drug Response and Tumor Dissemination. Curr Protoc. 2022;2:e357. 10.1002/cpz1.357. PubMed

Srivastava VK, Nalbantoglu J. Flow cytometric characterization of the DAOY medulloblastoma cell line for the cancer stem-like phenotype. Cytometry A. 2008;73:940–8. 10.1002/cyto.a.20633. PubMed

García-López R, et al. Sonic hedgehog inhibition reduces in vitro tumorigenesis and alters expression of Gli1-target genes in a desmoplastic medulloblastoma cell line. J Cancer Res Therapy. 2013;1:11–23. 10.14312/2052-4994.2013-3.

Li XN, et al. Phenylbutyrate and phenylacetate induce differentiation and inhibit proliferation of human medulloblastoma cells. Clin Cancer Res. 2004;10:1150–9. 10.1158/1078-0432.ccr-0747-3. PubMed

Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133 + sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 2007;67:1–5. 10.1016/j.ijrobp.2006.09.037. PubMed

Swaminathan SK, et al. Identification of a novel monoclonal antibody recognizing CD133. J Immunol Methods. 2010;361:110–5. 10.1016/j.jim.2010.07.007. PubMed

Yang MY, Lee HT, Chen CM, Shen CC, Ma H. I. Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. Int J Mol Sci. 2014;15:11013–29. 10.3390/ijms150611013. PubMed PMC

Casciati A, et al. Human medulloblastoma cell lines: investigating on cancer stem cell-like phenotype. Cancers (Basel). 2020;12. 10.3390/cancers12010226. PubMed PMC

Douyere M, et al. NRP1 inhibition modulates radiosensitivity of medulloblastoma by targeting cancer stem cells. Cancer Cell Int. 2022;22:377. 10.1186/s12935-022-02796-4. PubMed PMC

Bonfim-Silva R, et al. Biological characterization of the UW402, UW473, ONS-76 and DAOY pediatric medulloblastoma cell lines. Cytotechnology. 2019;71:893–903. 10.1007/s10616-019-00332-3. PubMed PMC

Gu C, et al. Gene expression of growth signaling pathways is up-regulated in CD133-positive medulloblastoma cells. Oncol Lett. 2011;2:357–61. 10.3892/ol.2011.235. PubMed PMC

Barrantes-Freer A, et al. CD133 expression is not synonymous to immunoreactivity for AC133 and fluctuates throughout the cell cycle in Glioma Stem-Like cells. PLoS ONE. 2015;10:e0130519. 10.1371/journal.pone.0130519. PubMed PMC

Zikova M, Sulimenko V, Draber P, Draberova E. Accumulation of 210 kDa microtubule-interacting protein in differentiating P19 embryonal carcinoma cells. FEBS Lett. 2000;473:19–23. 10.1016/s0014-5793(00)01488-5. PubMed

Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res. 1992;33:505–12. 10.1002/jnr.490330402. PubMed

Yan T, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer. 2011;11:524. 10.1186/1471-2407-11-524. PubMed PMC

Vinores SA, Herman MM, Katsetos CD, May EE, Frankfurter A. Neuron-associated class III beta-tubulin, tau, and MAP2 in the D-283 Med cell line and in primary explants of human medulloblastoma. Histochem J. 1994;26:678–85. 10.1007/BF00158293. PubMed

Ghantasala S, et al. Multiple reaction monitoring-based targeted assays for the validation of protein biomarkers in brain tumors. Front Oncol. 2021;11:548243. 10.3389/fonc.2021.548243. PubMed PMC

Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60. 10.1038/nature05236. PubMed

Jaksch M, Munera J, Bajpai R, Terskikh A, Oshima RG. Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res. 2008;68:7882–6. 10.1158/0008-5472.CAN-08-0723. PubMed PMC

Sun Y, et al. CD133 (prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE. 2009;4:e5498. 10.1371/journal.pone.0005498. PubMed PMC

Zhou T, et al. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol. 2023;14:1133899. 10.3389/fimmu.2023.1133899. PubMed PMC

Song Y, et al. Sulfasalazine attenuates evading anticancer response of CD133-positive hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2017;36. 10.1186/s13046-017-0511-7. PubMed PMC

Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. 10.1038/nature03128. PubMed

Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7:18. 10.1186/s40169-018-0198-1. PubMed PMC

Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309–24. 10.1038/nprot.2008.226. PubMed

Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci. 2024;31:ARTN 13. 10.1186/s12929-024-00997-9. PubMed PMC

Mu P, et al. Newly developed 3D in vitro models to study tumor-immune interaction. J Exp Clin Cancer Res. 2023;42:81. 10.1186/s13046-023-02653-w. PubMed PMC

Chen JY et al. Molecular profile reveals immune-associated markers of medulloblastoma for different subtypes. Front Immunol. 2022:13. 10.3389/fimmu.2022.911260. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace