Comparative analysis of pediatric SHH medulloblastoma DAOY spheres and adherent monolayers: implications for medulloblastoma research
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NHH, 174701
Ministry of Health, Czech Republic
68378050-KAV-NPUI
Institutional funding - formal National Program for Sustainability
PubMed
39844249
PubMed Central
PMC11756056
DOI
10.1186/s12935-025-03646-9
PII: 10.1186/s12935-025-03646-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Medulloblastoma, the most prevalent brain tumor among children, requires a comprehensive understanding of its cellular characteristics for effective research and treatment. In this study, we focused on DAOY, a permanent cell line of medulloblastoma, and investigated the unique properties of DAOY cells when cultured as floating multicellular aggregates called spheres, as opposed to adherent monolayers. Through our comprehensive analysis, we identified distinct characteristics associated with DAOY spheres. Our findings demonstrate that DAOY spheres express markers for both neural stem cells, such as CD133 (PROM1), and differentiated neurons, exemplified by MAP2. Additionally, our investigation revealed that spheres-derived cells exhibit heightened resistance to ionizing radiation compared to adherent cells. Consequently, our results indicate that caution is advised when interpreting experimental results obtained from adherent cell cultures and extrapolating them to in vivo situations.
Department of Medical Physics Na Homolce Hospital Roentgenova 2 Prague 5 150 30 Czech Republic
Faculty of Science Charles University Albertov 6 Prague 2 128 00 Czech Republic
Zobrazit více v PubMed
Northcott PA, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5:11. 10.1038/s41572-019-0063-6. PubMed
Northcott PA, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56. 10.1038/nature11327. PubMed PMC
Cavalli FMG et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31:737–754 e736. 10.1016/j.ccell.2017.05.005. PubMed PMC
Mulhern RK, et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol. 2005;23:5511–9. 10.1200/JCO.2005.00.703. PubMed
Yeole U, et al. What happens after Therapy? Quality of life and neurocognitive functions of children with malignant posterior Fossa tumors after Adjuvant Therapy. Neurol India. 2021;69:1293–301. 10.4103/0028-3886.329599. PubMed PMC
Schroeder K, Gururangan S. Molecular variants and mutations in medulloblastoma. Pharmgenomics Pers Med. 2014;7:43–51. 10.2147/PGPM.S38698. PubMed PMC
Skowron P, et al. The transcriptional landscape of shh medulloblastoma. Nat Commun. 2021;12:1749. 10.1038/s41467-021-21883-0. PubMed PMC
Zhukova N, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31:2927–35. 10.1200/JCO.2012.48.5052. PubMed PMC
Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: choosing the right tool for the job. J Biotechnol. 2016;236:10–25. 10.1016/j.jbiotec.2016.07.028. PubMed
Saylors RL 3, et al. Infrequent p53 gene mutations in medulloblastomas. Cancer Res. 1991;51:4721–3. PubMed
Jacobsen PF, Jenkyn DJ, Papadimitriou JM. Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol. 1985;44:472–85. 10.1097/00005072-198509000-00003. PubMed
Hai Sang U, Banaie A, Rigby L, Chen J. Mutant p53 may selectively suppress glial specific proteins in pluripotential human neuroectodermal tumor cells. Neurosci Lett. 1998;244:41–6. 10.1016/s0304-3940(98)00061-5. PubMed
Wick W, et al. Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res. 2002;62:1915–9. PubMed
Salaroli R, et al. Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin? J Neurooncol. 2008;90:243–51. 10.1007/s11060-008-9659-5. PubMed
Zanini C, et al. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications. PLoS ONE. 2013;8:e63748. 10.1371/journal.pone.0063748. PubMed PMC
Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8. PubMed
Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106:803–11. 10.1111/cas.12691. PubMed PMC
Sutter R, et al. Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene. 2010;29:1845–56. 10.1038/onc.2009.472. PubMed
Pizer BL, Clifford SC. The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg. 2009;23:364–75. 10.1080/02688690903121807. PubMed
Ivanov DP, et al. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS ONE. 2014;9:e103817. 10.1371/journal.pone.0103817. PubMed PMC
Neve A, Santhana Kumar K, Tripolitsioti D, Grotzer MA, Baumgartner M. Investigation of brain tissue infiltration by medulloblastoma cells in an ex vivo model. Sci Rep. 2017;7:5297. 10.1038/s41598-017-05573-w. PubMed PMC
Schonholzer MT, et al. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia. 2020;22:470–83. 10.1016/j.neo.2020.07.006. PubMed PMC
Roper SJ, Linke F, Scotting PJ, Coyle B. 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination. Sci Rep. 2021;11:4259. 10.1038/s41598-021-83809-6. PubMed PMC
Roper SJ, Coyle B. Establishing an in vitro 3D spheroid model to Study Medulloblastoma Drug Response and Tumor Dissemination. Curr Protoc. 2022;2:e357. 10.1002/cpz1.357. PubMed
Srivastava VK, Nalbantoglu J. Flow cytometric characterization of the DAOY medulloblastoma cell line for the cancer stem-like phenotype. Cytometry A. 2008;73:940–8. 10.1002/cyto.a.20633. PubMed
García-López R, et al. Sonic hedgehog inhibition reduces in vitro tumorigenesis and alters expression of Gli1-target genes in a desmoplastic medulloblastoma cell line. J Cancer Res Therapy. 2013;1:11–23. 10.14312/2052-4994.2013-3.
Li XN, et al. Phenylbutyrate and phenylacetate induce differentiation and inhibit proliferation of human medulloblastoma cells. Clin Cancer Res. 2004;10:1150–9. 10.1158/1078-0432.ccr-0747-3. PubMed
Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133 + sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 2007;67:1–5. 10.1016/j.ijrobp.2006.09.037. PubMed
Swaminathan SK, et al. Identification of a novel monoclonal antibody recognizing CD133. J Immunol Methods. 2010;361:110–5. 10.1016/j.jim.2010.07.007. PubMed
Yang MY, Lee HT, Chen CM, Shen CC, Ma H. I. Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. Int J Mol Sci. 2014;15:11013–29. 10.3390/ijms150611013. PubMed PMC
Casciati A, et al. Human medulloblastoma cell lines: investigating on cancer stem cell-like phenotype. Cancers (Basel). 2020;12. 10.3390/cancers12010226. PubMed PMC
Douyere M, et al. NRP1 inhibition modulates radiosensitivity of medulloblastoma by targeting cancer stem cells. Cancer Cell Int. 2022;22:377. 10.1186/s12935-022-02796-4. PubMed PMC
Bonfim-Silva R, et al. Biological characterization of the UW402, UW473, ONS-76 and DAOY pediatric medulloblastoma cell lines. Cytotechnology. 2019;71:893–903. 10.1007/s10616-019-00332-3. PubMed PMC
Gu C, et al. Gene expression of growth signaling pathways is up-regulated in CD133-positive medulloblastoma cells. Oncol Lett. 2011;2:357–61. 10.3892/ol.2011.235. PubMed PMC
Barrantes-Freer A, et al. CD133 expression is not synonymous to immunoreactivity for AC133 and fluctuates throughout the cell cycle in Glioma Stem-Like cells. PLoS ONE. 2015;10:e0130519. 10.1371/journal.pone.0130519. PubMed PMC
Zikova M, Sulimenko V, Draber P, Draberova E. Accumulation of 210 kDa microtubule-interacting protein in differentiating P19 embryonal carcinoma cells. FEBS Lett. 2000;473:19–23. 10.1016/s0014-5793(00)01488-5. PubMed
Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res. 1992;33:505–12. 10.1002/jnr.490330402. PubMed
Yan T, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer. 2011;11:524. 10.1186/1471-2407-11-524. PubMed PMC
Vinores SA, Herman MM, Katsetos CD, May EE, Frankfurter A. Neuron-associated class III beta-tubulin, tau, and MAP2 in the D-283 Med cell line and in primary explants of human medulloblastoma. Histochem J. 1994;26:678–85. 10.1007/BF00158293. PubMed
Ghantasala S, et al. Multiple reaction monitoring-based targeted assays for the validation of protein biomarkers in brain tumors. Front Oncol. 2021;11:548243. 10.3389/fonc.2021.548243. PubMed PMC
Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60. 10.1038/nature05236. PubMed
Jaksch M, Munera J, Bajpai R, Terskikh A, Oshima RG. Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res. 2008;68:7882–6. 10.1158/0008-5472.CAN-08-0723. PubMed PMC
Sun Y, et al. CD133 (prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE. 2009;4:e5498. 10.1371/journal.pone.0005498. PubMed PMC
Zhou T, et al. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol. 2023;14:1133899. 10.3389/fimmu.2023.1133899. PubMed PMC
Song Y, et al. Sulfasalazine attenuates evading anticancer response of CD133-positive hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2017;36. 10.1186/s13046-017-0511-7. PubMed PMC
Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. 10.1038/nature03128. PubMed
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7:18. 10.1186/s40169-018-0198-1. PubMed PMC
Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309–24. 10.1038/nprot.2008.226. PubMed
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci. 2024;31:ARTN 13. 10.1186/s12929-024-00997-9. PubMed PMC
Mu P, et al. Newly developed 3D in vitro models to study tumor-immune interaction. J Exp Clin Cancer Res. 2023;42:81. 10.1186/s13046-023-02653-w. PubMed PMC
Chen JY et al. Molecular profile reveals immune-associated markers of medulloblastoma for different subtypes. Front Immunol. 2022:13. 10.3389/fimmu.2022.911260. PubMed PMC