Computational modeling of bone allograft reconstruction following femoral shaft tumor resection: Investigating the impact of supplementary plate fixation

. 2025 ; 20 (2) : e0316719. [epub] 20250206

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39913461

BACKGROUND AND OBJECTIVE: The use of bone allograft reconstructions after tumor resection can introduce significant complications. Stable fixation is required to decrease the incidence of mechanical complications of segmental bone allografts. The purpose of the present study is to compare plating fixation methods of diaphyseal allografts after intercalary resection of the femur. METHODS: We created four defined fixation models using plates and/or intramedullary polymethylmethacrylate (PMMA) to simulate typical bone tumor resection with intercalary allograft reconstruction. One angularly stable plate (DFP) with 13 locking screws and fresh frozen allografts (labeled "I") were used for bone reconstruction. Three modified reconstructions were created: "II" included a supplementary plate (SP) with four locking screws, "III" was augmented with intramedullary PMMA in the allograft, and "IV" combined intramedullary PMMA and both plates. We applied a load model that simulates partial weight bearing on the lower limb to simulate the load during postoperative rehabilitation. RESULTS: The highest stress in the DFP occurred at the allograft-bone transition, with variant IV reaching 297 MPa. PMMA augmentation reduced median interfragmentary motion (IFM) and sliding distances, with variant III achieving the lowest distal sliding distance (0.9 μm) in the distal area. Supplementary plate fixation reduced maximal and median proximal IFM distances (86.9 μm in variant II vs. 116.0 μm in variant I) but increased sliding distances (23.7 μm in variant II vs. 0.6 μm in variant I). CONCLUSIONS: PMMA augmentation reduces IFM and sliding distances, enhancing rigidity, particularly in the distal area. Supplementary plate fixation decreases IFM distances in the proximal area but increases sliding distances in the same region. Variants III and IV demonstrate lower IFM and sliding distances in the distal area overall. Variant III shows very low sliding distances in both distal and proximal areas. Variant IV combines improved firmness with slightly higher stress levels.

Zobrazit více v PubMed

Belayneh R, Fourman MS, Bhogal S, Weiss KR. Update on Osteosarcoma. Curr Oncol Rep. 2021;23: 71. doi: 10.1007/s11912-021-01053-7 PubMed DOI

Grinberg SZ, Posta A, Weber KL, Wilson RJ. Limb Salvage and Reconstruction Options in Osteosarcoma. Adv Exp Med Biol. 2020;1257: 13–29. doi: 10.1007/978-3-030-43032-0_2 PubMed DOI

Pilavaki P, Gahanbani Ardakani A, Gikas P, Constantinidou A. Osteosarcoma: Current Concepts and Evolutions in Management Principles. J Clin Med. 2023;12: 2785. doi: 10.3390/jcm12082785 PubMed DOI PMC

Mavrogenis AF, Angelini A, Vottis C, Palmerini E, Rimondi E, Rossi G, et al.. State-of-the-art approach for bone sarcomas. Eur J Orthop Surg Traumatol. 2015;25: 5–15. doi: 10.1007/s00590-014-1468-2 PubMed DOI

Zekry KM, Yamamoto N, Hayashi K, Takeuchi A, Alkhooly AZA, Abd-Elfattah AS, et al.. Reconstruction of intercalary bone defect after resection of malignant bone tumor. J Orthop Surg (Hong Kong). 2019;27: 230949901983297. doi: 10.1177/2309499019832970 PubMed DOI

Liu Q, Long F, Zhang C, Liu Y, He H, Luo W. Biological reconstruction of bone defect after resection of malignant bone tumor by allograft: a single-center retrospective cohort study. World J Surg Oncol. 2023;21: 234. doi: 10.1186/s12957-023-03121-7 PubMed DOI PMC

Raskin KA, Hornicek F. Allograft reconstruction in malignant bone tumors: indications and limits. Recent Results Cancer Res. 2009;179: 51–58. doi: 10.1007/978-3-540-77960-5_5 PubMed DOI

Aponte-Tinao L, Farfalli GL, Ritacco LE, Ayerza MA, Muscolo LD. Intercalary Femur Allografts Are an Acceptable Alternative After Tumor Resection. Clinical Orthopaedics & Related Research. 2012;470: 728–734. doi: 10.1007/s11999-011-1952-5 PubMed DOI PMC

Frisoni T, Cevolani L, Giorgini A, Dozza B, Donati DM. Factors affecting outcome of massive intercalary bone allografts in the treatment of tumours of the femur. The Journal of Bone and Joint Surgery British volume. 2012;94-B: 836–841. doi: 10.1302/0301-620X.94B6.28680 PubMed DOI

Ortiz-Cruz E, Gebhardt MC, Jennings LC, Springfield DS, Mankin HJ. The Results of Transplantation of Intercalary Allografts after Resection of Tumors. A Long-Term Follow-up Study*: The Journal of Bone and Joint Surgery-American Volume. 1997;79: 97–106. doi: 10.2106/00004623-199701000-00010 PubMed DOI

Ahlmann ER, Menendez LR. Intercalary endoprosthetic reconstruction for diaphyseal bone tumours. The Journal of Bone and Joint Surgery British volume. 2006;88-B: 1487–1491. doi: 10.1302/0301-620X.88B11.18038 PubMed DOI

Farfalli GL, Aponte-Tinao L, Lopez-Millán L, Ayerza MA, Muscolo DL. Clinical and Functional Outcomes of Tibial Intercalary Allografts After Tumor Resection. Orthopedics. 2012;35. doi: 10.3928/01477447-20120222-25 PubMed DOI

Atherley O’Meally A, Cosentino M, Aiba H, Aso A, Solou K, Rizzi G, et al.. Similar complications, implant survival, and function following modular prosthesis and allograft-prosthesis composite reconstructions of the proximal femur for primary bone tumors: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol. 2024;34: 1581–1595. doi: 10.1007/s00590-024-03846-5 PubMed DOI

Sanders PTJ, Spierings JF, Albergo JI, Bus MPA, Fiocco M, Farfalli GL, et al.. Long-Term Clinical Outcomes of Intercalary Allograft Reconstruction for Lower-Extremity Bone Tumors. J Bone Joint Surg Am. 2020;102: 1042–1049. doi: 10.2106/JBJS.18.00893 PubMed DOI

Gupta S, Kafchinski LA, Gundle KR, Saidi K, Griffin AM, Wunder JS, et al.. Intercalary allograft augmented with intramedullary cement and plate fixation is a reliable solution after resection of a diaphyseal tumour. The Bone & Joint Journal. 2017;99-B: 973–978. doi: 10.1302/0301-620X.99B7.BJJ-2016-0996 PubMed DOI

Bus MPA, Dijkstra PDS, van de Sande MAJ, Taminiau AHM, Schreuder HWB, Jutte PC, et al.. Intercalary Allograft Reconstructions Following Resection of Primary Bone Tumors: A Nationwide Multicenter Study. Journal of Bone and Joint Surgery. 2014;96: e26. doi: 10.2106/JBJS.M.00655 PubMed DOI

Lewis GS, Mischler D, Wee H, Reid JS, Varga P. Finite Element Analysis of Fracture Fixation. Curr Osteoporos Rep. 2021;19: 403–416. doi: 10.1007/s11914-021-00690-y PubMed DOI PMC

Oefner C, Herrmann S, Kebbach M, Lange H-E, Kluess D, Woiczinski M. Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics. Med Eng Phys. 2021;92: 25–32. doi: 10.1016/j.medengphy.2021.03.011 PubMed DOI

Apostolopoulos V, Boháč P, Marcián P, Nachtnebl L, Mahdal M, Pazourek L, et al.. Biomechanical comparison of all-polyethylene total knee replacement and its metal-backed equivalent on periprosthetic tibia using the finite element method. J Orthop Surg Res. 2024;19: 153. doi: 10.1186/s13018-024-04631-0 PubMed DOI PMC

Sun J, Wu L, Fang N, Liu L. IFM calculator: An algorithm for interfragmentary motion calculation in finite element analysis. Computer Methods and Programs in Biomedicine. 2024;244: 107996. doi: 10.1016/j.cmpb.2023.107996 PubMed DOI

O’Rourke D, Johnson LJ, Jagiello J, Taylor M. Examining agreement between finite element modelling methodologies in predicting pathological fracture risk in proximal femurs with bone metastases. Clinical Biomechanics. 2023;104: 105931. doi: 10.1016/j.clinbiomech.2023.105931 PubMed DOI

Sugano M, Hagiwara S, Nakamura J, Matsuura Y, Suzuki T, Wako Y, et al.. Comparison study of bone strength of the proximal femur with and without hip osteoarthritis by computed tomography-based finite element analysis. Journal of Biomechanics. 2020;105: 109810. doi: 10.1016/j.jbiomech.2020.109810 PubMed DOI

Apostolopoulos V, Tomáš T, Boháč P, Marcián P, Mahdal M, Valoušek T, et al.. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method. Computer Methods and Programs in Biomedicine. 2022;220: 106834. doi: 10.1016/j.cmpb.2022.106834 PubMed DOI

Marcián P, Konecný O, Borák L, J Valasek, Rehak K, Krpalek D, et al.. On the level of computational models in biomechanics depending on gained data from CT/MRI and micro-CT. 2011.

Jiang D, Zhan S, Cai Q, Hu H, Jia W. Enhanced interfragmentary stability and improved clinical prognosis with use of the off-axis screw technique to treat vertical femoral neck fractures in nongeriatric patients. J Orthop Surg Res. 2021;16: 473. doi: 10.1186/s13018-021-02619-8 PubMed DOI PMC

Nishii T, Sugano N, Sato Y, Tanaka H, Miki H, Yoshikawa H. Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of MR imaging. Osteoarthritis and Cartilage. 2004;12: 650–657. doi: 10.1016/j.joca.2004.04.009 PubMed DOI

Müller M. E., Allgöwer M., & Willenegger H. (2013). Technik der operativen Frakturenbehandlung. springer-Verlag.

Dion N, Sim FH. The use of allografts in musculoskeletal oncology. Instr Course Lect. 2002;51: 499–506. PubMed

Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA. BIOMECHANICAL PROPERTIES OF CORTICAL ALLOGRAFT BONE USING A NEW METHOD OF BONE STRENGTH MEASUREMENT: A COMPARISON OF FRESH, FRESH-FROZEN AND IRRADIATED BONE. The Journal of Bone and Joint Surgery British volume. 1996;78-B: 363–368. doi: 10.1302/0301-620X.78B3.0780363 PubMed DOI

Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, Tomford WW. Long-Term Results of Allograft Replacement in the Management of Bone Tumors: Clinical Orthopaedics and Related Research. 1996;324: 86–97. doi: 10.1097/00003086-199603000-00011 PubMed DOI

Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Progress in Materials Science. 2009;54: 397–425. doi: 10.1016/j.pmatsci.2008.06.004 DOI

Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, et al.. Microscale bone grinding temperature by dynamic heat flux in nanoparticle jet mist cooling with different particle sizes. Materials and Manufacturing Processes. 2018;33: 58–68. doi: 10.1080/10426914.2016.1244846 DOI

Lai Y-S, Chen W-C, Huang C-H, Cheng C-K, Chan K-K, Chang T-K. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction. Woloschak GE, editor. PLoS ONE. 2015;10: e0127293. doi: 10.1371/journal.pone.0127293 PubMed DOI PMC

Lei J, Dong P, Li Z, Zhu F, Wang Z, Cai X. Biomechanical analysis of the fixation systems for anterior column and posterior hemi-transverse acetabular fractures. Acta Orthopaedica et Traumatologica Turcica. 2017;51: 248–253. doi: 10.1016/j.aott.2017.02.003 PubMed DOI PMC

Dunne N. Mechanical properties of bone cements. Orthopaedic Bone Cements. Elsevier; 2008. pp. 233–264. doi: 10.1533/9781845695170.3.233 DOI

Wang Y, Yamako G, Okada T, Arakawa H, Nakamura Y, Chosa E. Biomechanical effect of intertrochanteric curved varus osteotomy on stress reduction in femoral head osteonecrosis: a finite element analysis. J Orthop Surg Res. 2021;16: 465. doi: 10.1186/s13018-021-02614-z PubMed DOI PMC

Feher J. Skeletal Muscle Mechanics. Quantitative Human Physiology. Elsevier; 2017. pp. 292–304. doi: 10.1016/B978-0-12-800883-6.00027–6 DOI

Phillips ATM, Pankaj P, Howie CR, Usmani AS, Simpson AHRW. Finite element modelling of the pelvis: Inclusion of muscular and ligamentous boundary conditions. Medical Engineering & Physics. 2007;29: 739–748. doi: 10.1016/j.medengphy.2006.08.010 PubMed DOI

López-Campos J, Segade A, Casarejos E, Fernández J, Vilán J, Izquierdo P. Finite Element Study of a Threaded Fastening: The Case of Surgical Screws in Bone. Symmetry. 2018;10: 335. doi: 10.3390/sym10080335 DOI

Davim JP, Marques N. Dynamical experimental study of friction and wear behaviour of bovine cancellous bone sliding against a metallic counterface in a water lubricated environment. Journal of Materials Processing Technology. 2004;152: 389–394. doi: 10.1016/j.jmatprotec.2004.04.420 DOI

Fouly A, Nabhan A, Badran A. Mechanical and Tribological Characteristics of PMMA Reinforced by Natural Materials. Egypt J Chem. 2021;0: 0–0. doi: 10.21608/ejchem.2021.98063.4572 DOI

Zhang Y, Ahn PB, Fitzpatrick DC, Heiner AD, Poggie RA, Brown TD. INTERFACIAL FRICTIONAL BEHAVIOR: CANCELLOUS BONE, CORTICAL BONE, AND A NOVEL POROUS TANTALUM BIOMATERIAL. J Musculoskelet Res. 1999;03: 245–251. doi: 10.1142/S0218957799000269 DOI

Pomwenger W, Entacher K, Resch H, Schuller‑Götzburg P. Influence of glenoid implant depth on the bone–polymethylmethacrylate interface. Obere Extremität. 2019;14: 284–291. doi: 10.1007/s11678-019-0512-6 DOI

Kobayashi M, Hyu HS. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants. Materials. 2010;3: 2753–2771. doi: 10.3390/ma3042753 DOI

Cervantes-Uc JM, Cauich-Rodríguez JV, Hernández-Sánchez F, Chan-Chan LH. Bone Cements: Formulation, Modification, and Characterization. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis; 2015. pp. 1053–1066. doi: 10.1081/E-EBPP-120050598 DOI

Losertova Monika & Štamborská Michaela & Lapin J. & Mareš Vratislav. (2016). Comparison of deformation behavior of 316L stainless steel and Ti6Al4V alloy applied in traumatology. Metalurgija -Sisak then Zagreb-. 55. 667–670.

Muscolo DL. Use of Distal Femoral Osteoarticular Allografts in Limb Salvage Surgery. J Bone Joint Surg Am. 2005;87: 2449. doi: 10.2106/JBJS.D.02170 PubMed DOI

Ozaki T, Hillmann A, Bettin D, Wuisman P, Winkelmann W. Intramedullary, antibiotic-loaded cemented, massive allografts for skeletal reconstruction 26 cases compared with 19 uncemented allografts. Acta Orthopaedica Scandinavica. 1997;68: 387–391. doi: 10.3109/17453679708996183 PubMed DOI

Wunder JS, Davis AM, Hummel JS, Mandelcorn J, Griffin AM, Bell RS. The effect of intramedullary cement on intercalary allograft reconstruction of bone defects after tumour resection: a pilot study. Can J Surg. 1995;38: 521–527. PubMed

DeGroot H, Donati D, Di Liddo M, Gozzi E, Mercuri M. The Use of Cement in Osteoarticular Allografts for Proximal Humeral Bone Tumors: Clinical Orthopaedics and Related Research. 2004;427: 190–197. doi: 10.1097/01.blo.0000138959.50057.2c PubMed DOI

Gerrand CH, Griffin AM, Davis AM, Gross AE, Bell RS, Wunder JS. Large segment allograft survival is improved with intramedullary cement. Journal of Surgical Oncology. 2003;84: 198–208. doi: 10.1002/jso.10316 PubMed DOI

Ehrhart IC, Parker PE, Weidner WJ, Dabney JM, Scott JB, Haddy FJ. Coronary vascular and myocardial responses to carotid body stimulation in the dog. Am J Physiol. 1975;229: 754–760. doi: 10.1152/ajplegacy.1975.229.3.754 PubMed DOI

Burchardt H, Enneking WF. Transplantation of Bone. Surgical Clinics of North America. 1978;58: 403–427. doi: 10.1016/s0039-6109(16)41492-1 PubMed DOI

Van Boerum DH, Randall RL, Mohr RA, Conrad EU, Bachus KN. ROTATIONAL STABILITY OF A MODIFIED STEP-CUT FOR USE IN INTERCALARY ALLOGRAFTS: The Journal of Bone and Joint Surgery-American Volume. 2003;85: 1073–1078. doi: 10.2106/00004623-200306000-00014 PubMed DOI

Kenwright J, Goodship AE, Kelly DJ, Newman JH, Harris JD, Richardson JB, et al.. EFFECT OF CONTROLLED AXIAL MICROMOVEMENT ON HEALING OF TIBIAL FRACTURES. The Lancet. 1986;328: 1185–1187. doi: 10.1016/s0140-6736(86)92196-3 PubMed DOI

Wolf S, Janousek A, Pfeil J, Veith W, Haas F, Duda G, et al.. The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clinical Biomechanics. 1998;13: 359–364. doi: 10.1016/s0268-0033(98)00097-7 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...